首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spot or strip application of poisoned protein bait is a lure‐and‐kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the ‘apple’ type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter‐row plantings.  相似文献   

2.
3.
The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein–protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein–protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein–protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein–protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2′ position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein–protein interfaces is insignificant.  相似文献   

4.
Membrane contact sites (MCS) are platforms of physical contact between different organelles. They are formed through interactions involving lipids and proteins, and function in processes such as calcium and lipid exchange, metabolism and organelle biogenesis. In this article, we discuss emerging questions regarding the architecture, organisation and assembly of MCS, such as: What is the contribution of different components to the interaction between organelles? How is the specific composition of different types of membrane contacts sites established and maintained? How are proteins and lipids spatially organised at MCS and how does that influence their function? How dynamic are MCS on the molecular and ultrastructural level? We highlight current state of research and point out experimental approaches that promise to contribute to a spatiomechanistic understanding of MCS functions.  相似文献   

5.
Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia.  相似文献   

6.
The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on blood rheology is not completely investigated. We designed this study to determine the effect of CLTIHH on blood rheology parameters. Present study was performed in 16 male Spraque-Dawley rats that divided into CLTIHH and Control groups. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mmHg; 5 hours/day, 5 days/week, 5 weeks). The control rats stayed in the same environment as the CLTIHH rats but they breathed room air. In the blood samples aspirated from the heart, hematocrit, whole blood viscosity, plasma viscosity, plasma fibrinogen concentration, erythrocyte rigidity index and oxygen delivery index were determined. The whole blood viscosity, plasma viscosity, hematocrit and fibrinogen concentration values in the CLTIHH group were found to be higher than those of the control group. However, no significant difference was found in erythrocyte rigidity index and oxygen delivery index between the groups. Our results suggested that CLTIHH elevated whole blood viscosity by increasing plasma viscosity, fibrinogen concentration and hematocrit value without effecting the erythrocyte deformability. Hence, CLTIHH that may occur in intermittent high altitude exposure and some severe obstructive sleep apnea (OSA) patients may be responsible for hemorheologic changes in those subjects.  相似文献   

7.
The aim of this study was to investigate the influence of the upper limb swing on human gait. Measurements were performed on 52 subjects by using the Elite system with two cameras and a Kistler force platform. The recording of trajectories of characteristic body points on the subjects and the measurement of ground reaction forces have been performed at normal walking and at walking with emphasised rhythmic upper limb swing. The trajectory of the whole body mass centre, central dynamic moments of inertia and ground reaction forces have been calculated for every subject and mean curves of the entire group have been determined for walking with the natural and the emphasised upper limb swing. The determined mean values of normalised mechanical parameters have been compared and differences between the gait with the natural and the emphasised upper limb swing have been described.  相似文献   

8.
Trepanowski, JF, Farney, TM, McCarthy, CG, Schilling, BK, Craig, SA, and Bloomer, RJ. The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation, and associated biochemical parameters in resistance trained men. J Strength Cond Res 25(12): 3461-3471, 2011-We examined the effects of chronic betaine supplementation on exercise performance and associated parameters in resistance trained men. Men were randomly assigned in a double-blind manner using a crossover design to consume betaine (2.5 g of betaine mixed in 500 ml of Gatorade?) or a placebo (500 ml of Gatorade?) for 14 days, with a 21-day washout period. Before and after each treatment period, tests of lower- and upper-body muscular power and isometric force were conducted, including a test of upper-body muscular endurance (10 sets of bench press exercise to failure). Muscle tissue oxygen saturation (StO2) during the bench press protocol was measured via near infrared spectroscopy. Blood samples were collected before and after the exercise test protocol for analysis of lactate, nitrate/nitrite (NOx), and malondialdehyde (MDA). When analyzed using a repeated measures analysis of variance, no significant differences were noted between conditions for exercise performance variables (p > 0.05). However, an increase in total repetitions (p = 0.01) and total volume load (p = 0.02) in the 10-set bench press protocol was noted with betaine supplementation (paired t-tests), with values increasing approximately 6.5% from preintervention to postintervention. Although not of statistical significance (p = 0.14), postexercise blood lactate increased to a lesser extent with betaine supplementation (210%) compared with placebo administration (270%). NOx was lower postintervention as compared with preintervention (p = 0.06), and MDA was relatively unchanged. The decrease in StO2 during the bench press protocol was greater with betaine vs. placebo (p = 0.01), possibly suggesting enhanced muscle oxygen consumption. These findings indicate that betaine supplementation results in a moderate increase in total repetitions and volume load in the bench press exercise, without favorably impacting other performance measures.  相似文献   

9.
The formation of specific protein interactions plays a crucial role in most, if not all, biological processes, including signal transduction, cell regulation, the immune response and others. Recent advances in our understanding of the molecular architecture of protein-protein binding sites, which facilitates such diversity in binding affinity and specificity, are enabling us to address key questions. What is the amino acid composition of binding sites? What are interface hotspots? How are binding sites organized? What are the differences between tight and weak interacting complexes? How does water contribute to binding? Can the knowledge gained be translated into protein design? And does a universal code for binding exist, or is it the architecture and chemistry of the interface that enable diverse but specific binding solutions?  相似文献   

10.
R R Almon  S H Appel 《Biochemistry》1976,15(17):3662-3667
Cholinergic interactions in systems derived from rat skeletal mixed muscle are detailed. The isotherms of the binding of [125I]diiodo-alpha-bungarotoxin over the range of 10(-10)-10(-5) M toxin have been separated into a "nonspecific" component exclusive to the toxin and a "specific" component that binds both the toxin and d-tubocurarine. The "specific" component appears to reflect two independent sets of binding sites. One of the sets has an affinity constant on the order of 10(9) M-1. Following denervation, the number of sites in this high-affinity set begins to increase after 3 days, reaches a peak (28-fold higher than normal) on the 8th day, and begins to decline. Similar results are obtained when sensitivity of this set to an antibody derived from patients with myasthenia gravis is examined. This sensitivity is reflected by the inhibition of the alpha-bungarotoxin binding by the myasthenic IgG fraction. Following denervation, sensitivity first appears on day 3 progresses coincidentally with the increase in new sites in the set. The charcteristics of this set suggest that it represents the acetylcholine receptor and that the new sites appearing during the course of denervation are extrajunctional receptor sites. The interaction with the myasthenic IgG indicates an antigenic difference between junctional and extrajunctional receptors. The second set of specific binding sites has an affinity constant on the order of 10(5) M-1. The number of sites in this set increases only fivefold as a result of denervation. The increase also begins between days 2 and 3. The definition of this low affinity set of sites is not presently clear.  相似文献   

11.
Effect of aging on human muscle architecture.   总被引:7,自引:0,他引:7  
The effect of aging on human gastrocnemius medialis (GM) muscle architecture was evaluated by comparing morphometric measurements on 14 young (aged 27-42 yr) and on 16 older (aged 70-81 yr) physically active men, matched for height, body mass, and physical activity. GM muscle anatomic cross-sectional area (ACSA) and volume (Vol) were measured by computerized tomography, and GM fascicle length (Lf) and pennation angle (theta) were assessed by ultrasonography. GM physiological cross-sectional area (PCSA) was calculated as the ratio of Vol/Lf. In the elderly, ACSA and Vol were, respectively, 19.1% (P < 0.005) and 25.4% (P < 0.001) smaller than in the young adults. Also, Lf and were found to be smaller in the elderly group by 10.2% (P < 0.01) and 13.2% (P < 0.01), respectively. When the data for the young and elderly adults were pooled together, significantly correlated with ACSA (P < 0.05). Because of the reduced Vol and Lf in the elderly group, the resulting PCSA was found to be 15.2% (P < 0.05) smaller. In conclusion, this study demonstrates that aging significantly affects human skeletal muscle architecture. These structural alterations are expected to have implications for muscle function in old age.  相似文献   

12.
Successful production of aquaculture species depends on efficient growth with low susceptibility to disease. Therefore, selection programs have focused on rapid growth combined with disease resistance. However, chronic immune stimulation diminishes muscle growth (a syndrome referred to as cachexia), and decreases growth efficiency in production animals, including rainbow trout. In mammals, recent results show that increased levels of pro-inflammatory cytokines, such as those seen during an immune assault, specifically target myosin and MyoD and inhibit muscle growth. This suggests that increased disease resistance in fish, a desired trait for production, may actually decrease the growth of muscle, the main aquacultural commodity. To test this possibility, a rainbow trout model of cachexia was developed and characterized. A six-week study was conducted in which rainbow trout were chronically immune stimulated by repeated injections of LPS. Growth indices were monitored, and whole body and muscle proximate analyses, real-time PCR, and Western blotting were conducted to examine the resulting cachectic phenotype. Muscle ratio was decreased in fish chronically immunostimulated, however expression levels of MyoD2 and myosin were not decreased compared to fish that were not immunostimulated, indicating that while muscle accretion was altered, the mechanism by which it occurred was somewhat different than that characterized in mammals. Microarray analysis was used to compare gene expression in fish that had been chronically immunostimulated versus those that had not to identify possible alternative mechanisms of cachexia in fish.  相似文献   

13.
Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axrl, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response.  相似文献   

14.
15.
16.
We explore the structural deterioration of human bone tissue in osteoporosis as a model for bone loss in microgravity conditions. Measures of complexity are applied to quantify the structural composition of bone tissue at six different skeletal locations. The complexity of the bone architecture and the rate of its decay during the bone loss are analyzed and compared with each other at the different locations.  相似文献   

17.
The bodyweight squat is a common movement and is safe and effective. There are many variations and techniques, but little research has explored alterations of the movement. The purpose of this study was to examine the effects of 2 arm positions on select kinematic variables during the bodyweight squat. The participants were classified as normal-weight (NW: n = 17, height: 1.67 ± 0.06 m, weight: 61.25 ± 6.90 kg, body mass index [BMI]: 21.92 ± 1.68) or overweight (OW: n = 11, height: 1.68 ± 0.06 m, weight: 88.91 ± 16.86 kg, BMI: 31.64 ± 6.06) according to BMI. The participants completed a bodyweight squat with the arms held at the sides (AP1) followed by a bodyweight squat with the arms held at shoulder level (AP2). Reflective markers were placed on the shoulder, hip, knee, base of the fifth toe, and heel. Data were recorded and analyzed using Peak 9. Trunk and knee flexion was analyzed using separate repeated measures analyses of variance. Overweight participants exhibited reduced knee (OW: 75.56 ± 17.94°; NW: 83.73 ± 13.03°; p < 0.05) and trunk flexion (OW: -78.18 ± 17.72°; NW: -90.65 ± 17.57°; p = 0.05). Holding the arms at shoulder level resulted in greater knee flexion (AP1: 80.81 ± 15.17°; AP2: 86.31 ± 15.21°; p < 0.01). Both weight status and arm position affected the range of motion in the bodyweight squat. Using an arms-up position should be considered, especially for the OW population, to increase the benefits of the bodyweight squat by increasing the range of motion.  相似文献   

18.
Intrinsic skeletal muscle abnormalities decrease muscular endurance in chronic heart failure (CHF). In CHF patients, the number of skeletal muscle Na(+)-K(+) pumps that have a high affinity for ouabain (i.e., the concentration of [(3)H]ouabain binding sites) is reduced, and this reduction is correlated with peak oxygen uptake. The present investigation determined whether the concentration of skeletal muscle [(3)H]ouabain binding sites found during CHF is related to 1) severity of the disease state, 2) muscle fiber type composition, and/or 3) endurance capacity. Four muscles were chosen that represented slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), and mixed fiber types. Measurements were obtained 8-10 wk postsurgery in 23 myocardial infarcted (MI) and 18 sham-operated control (sham) rats. Eighteen rats had moderate left ventricular (LV) dysfunction [LV end-diastolic pressure (LVEDP) < 20 mmHg], and five had severe LV dysfunction (LVEDP > 20 mmHg). Rats with severe LV dysfunction had significant pulmonary congestion and were likely in a chronic state of compensated congestive failure as indicated by an approximately twofold increase in both lung and right ventricle weight. Run time to fatigue and maximal oxygen uptake (VO(2 max)) were significantly reduced ( downward arrow39 and downward arrow28%, respectively) in the rats with severe LV dysfunction and correlated with the magnitude of LV dysfunction as indicated by LVEDP (run time: r = 0.60, n = 21, P < 0.01 and VO(2 max): r = 0.93, n = 13, P < 0.01). In addition, run time to fatigue was significantly correlated with VO(2 max) (r = 0.87, n = 15, P < 0.01). The concentration of [(3)H]ouabain binding sites (B(max)) was significantly reduced (21-28%) in the three muscles comprised primarily of oxidative fibers [soleus: 259 +/- 14 vs. 188 +/- 17; plantaris: 295 +/- 17 vs. 229 +/- 18; red portion of gastrocnemius: 326 +/- 17 vs. 260 +/- 14 pmol/g wet tissue wt]. In addition, B(max) was significantly correlated with VO(2 max) (soleus: r = 0.54, n = 15, P < 0.05; plantaris: r = 0.59, n = 15, P < 0.05; red portion of gastrocnemius: r = 0.65, n = 15, P < 0.01). These results suggest that downregulation of Na(+)-K(+) pumps that possess a high affinity for ouabain in oxidative skeletal muscle may play an important role in the exercise intolerance that attends severe LV dysfunction in CHF.  相似文献   

19.
20.
A model is developed to represent elbow motions of a cerebral palsied arm with athetotic movements. The parameters of the model are defined and determined. The resulting computer model can then be used to either generate athetotic motions or to regenerate prerecorded experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号