首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome rearrangements may affect the rate and patterns of gene flow within species, through reduced fitness of structural heterozygotes or by reducing recombination rates in rearranged areas of the genome. While the effects of chromosome rearrangements on gene flow have been studied in a wide range of organisms with monocentric chromosomes, the effects of rearrangements in holocentric chromosomes—chromosomes in which centromeric activity is distributed along the length of the chromosome—have not. We collected chromosome number and molecular genetic data in Carex scoparia, an eastern North American plant species with holocentric chromosomes and highly variable karyotype (2n = 56–70). There are no deep genetic breaks within C. scoparia that would suggest cryptic species differentiation. However, genetic distance between individuals is positively correlated with chromosome number difference and geographic distance. A positive correlation is also found between chromosome number and genetic distance in the western North American C. pachystachya (2n = 74–81). These findings suggest that geographic distance and the number of karyotype rearrangements separating populations affect the rate of gene flow between those populations. This is the first study to quantify the effects of holocentric chromosome rearrangements on the partitioning of intraspecific genetic variance.  相似文献   

2.
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.  相似文献   

3.
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.  相似文献   

4.
Revealing the genetic basis of reproductive isolation is fundamental for understanding the speciation process. Chromosome speciation models propose a role for chromosomal rearrangements in promoting the build up of reproductive isolation between diverging populations and empirical data from several animal and plant taxa support these models. The pied flycatcher and the collared flycatcher are two closely related species that probably evolved reproductive isolation during geographical separation in Pleistocene glaciation refugia. Despite the short divergence time and current hybridization, these two species demonstrate a high degree of intrinsic post‐zygotic isolation and previous studies have shown that traits involved in mate choice and hybrid viability map to the Z‐chromosome. Could rearrangements of the Z‐chromosome between the species explain their reproductive isolation? We developed high coverage Z‐chromosome linkage maps for both species, using gene‐based markers and large‐scale SNP genotyping. Best order maps contained 57–62 gene markers with an estimated average density of one every 1–1.5 Mb. We estimated the recombination rates in flycatcher Z‐chromosomes to 1.1–1.3 cM/Mb. A comparison of the maps of the two species revealed extensive co‐linearity with no strong evidence for chromosomal rearrangements. This study does therefore not provide support the idea that sex chromosome rearrangements have caused the relatively strong post‐zygotic reproductive isolation between these two Ficedula species.  相似文献   

5.
C C Ramírez  E M Dessen 《Génome》2000,43(1):143-151
An analysis of the ovarian polytene chromosomes of Anopheles cruzii from three localities in Southeast Brazil revealed the existence of two genetic entities within this morphologically uniform taxon. These cryptic species differed in the banding patterns of the X chromosome and 3L arm. A pattern of bands that cannot be explained by the fixation of any of the known inversions in chromosome X was revealed and named chromosomal form B to distinguish it from the standard pattern of this X chromosome, form A. Each chromosomal form is characterized by a different set of inversions. The lack of heterozygotes (A/B) for these X chromosome forms in populations where both forms coexist is evidence of absence or limited gene flow between the two groups.  相似文献   

6.
The action of natural selection is expected to reduce the effective population size of a nonrecombining chromosome, and this is thought to be the chief factor leading to genetic degeneration of Y-chromosomes, which cease recombining during their evolution from ordinary chromosomes. Low effective population size of Y chromosomes can be tested by studying DNA sequence diversity of Y-linked genes. In the dioecious plant, Silene latifolia, which has sex chromosomes, one comparison (SlX1 vs. SlY1) indeed finds lower Y diversity compared with the homologous X-linked gene, and one Y-linked gene with no X-linked homologue has lower species-wide diversity than a homologous autosomal copy (SlAp3Y vs. SlAp3A). To test whether this is a general pattern for Y-linked genes, we studied two further recently described X and Y homologous gene pairs in samples from several populations of S. latifolia and S. dioica. Diversity is reduced for both Y-linked genes, compared with their X-linked homologues. Our new data are analysed to show that the low Y effective size cannot be explained by different levels of gene flow for the X vs. the Y chromosomes, either between populations or between these closely related species. Thus, all four Y-linked genes that have now been studied in these plants (the two studied here, and two previously studied genes, have low diversity). This supports other evidence for an ongoing degeneration process in these species.  相似文献   

7.
Ramirez CC  Dessen EM 《Genetica》2000,108(1):73-80
Anopheles cruziiis the most common species of mosquito in Southeast Brazil and a vector of human and monkey malaria. The banding pattern of the ovarian polytene chromosomes and the frequencies of paracentric inversions of individuals from two populations were studied. A new sequence of bands on the sex chromosome, defined as form C, was disclosed. In both populations where forms A (considered as standard) and C are sympatric no heterozygotes were detected. A sequence of events that could account for the observed changes in the banding sequences of the X chromosome forms was proposed. The frequencies of 22 paracentric inversions were used to assess panmixia and the results indicated the presence of two distinct genetic pools in each population. We consider these results as evidence of another sibling species in the taxon cruzii, characterized by a distinctive form of the X chromosome and provisionally designated Anopheles cruziispecies C.  相似文献   

8.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

9.
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.  相似文献   

10.
Drosophila mojavensis and Drosophila arizonae, a pair of sibling species endemic to North America, constitute an important model system to study ecological genetics and the evolution of reproductive isolation. This species pair can produce fertile hybrids in some crosses and are sympatric in a large part of their ranges. Despite the potential for hybridization in nature, however, evidence of introgression has not been rigorously sought. Further, the evolutionary relationships within and among the geographically distant populations of the two species have not been characterized in detail using high-resolution molecular studies. Both species have six chromosomes: five large acrocentrics and one 'dot' chromosome. Fixed inversion differences between the species exist in three chromosomes (X, 2 and 3) while three are colinear (4, 5 and 6), suggesting that were introgression to occur, it would be most likely in the colinear chromosomes. We utilized nucleotide sequence variation at multiple loci on five chromosomes to test for evidence of introgression, and to test various scenarios for the evolutionary relationships of these two species and their populations. While we do not find evidence of recent introgression, loci in the colinear chromosomes appear to have participated in exchange in the past. We also found considerable population structure within both species. The level of differentiation discovered among D. arizonae populations was unexpectedly high and suggests that its populations, as well as those of D. mojavensis, may be themselves undergoing incipient speciation and merit further attention.  相似文献   

11.
Chromosomes exhibiting elevated levels of differentiation are termed hypervariable but no proposed mechanisms are sufficient to account for such enhanced evolutionary divergence. Both hypervariable sex and supernumerary (B) chromosomes were investigated in the endemic New Zealand frog, Leiopelma hochstetteri, which is chromosomally polymorphic both within and between populations and has sufficiently elevated variation that different populations can be identified solely by their C-banded karyotypes. This frog is further distinguished by the univalent, female-specific W-chromosome (0W/00 sex determination) uniquely possessed by North Island populations. This sex chromosome exhibited variation in morphology, size, and heterochromatin distribution, sufficient to resolve 11 different types, including isochromosomes. Five of the 12 populations examined also had supernumerary chromosomes that varied in number (up to 15 per individual) and morphology. Specific variations seen among the hypervariable chromosomes could have resulted from heterochromatinisation, chromosome fusions, loss-of-function mutations, deletions, and/or duplications. Frogs of the same species from Great Barrier Island, however, had neither supernumeraries nor the female-specific chromosome. The 0W/00 sex chromosome system must have been derived after the isolation of Great Barrier Island from North Island populations by raised sea levels between 14 000 and 8000 years ago. Furthermore, biochemical divergence between populations is minor and therefore the chromosomal variation seen is comparatively recent in origin. The one characteristic common to all known hypervariable chromosomes is curtailment or lack of recombination. Their accelerated evolution therefore is possible via the mechanism of Muller's ratchet, either alone or in concert with other factors.  相似文献   

12.
Models of the evolution of host shifts and speciation in phytophagous insects are often built upon the assumption that host selection is under simple genetic control, perhaps even a single locus. The genetic basis for differences in host-plant preference by ovipositing insects was investigated using two closely related species of swallowtail butterfly, Papilio oregonius and P. zelicaon, which differ in the plant families on which females oviposit. Both species had been shown previously to vary within populations in host selection. A combination of analyses using reciprocal interspecific crosses and isofemale strains within populations indicated that oviposition preference in these species is determined significantly by one or more loci on the X chromosome, which female Lepidoptera inherit only paternally. Hence, preferences in hybrid females tended toward the paternal species. This is the first insect group for which partial control of oviposition preference has been localized onto a particular chromosome. In addition, one or more loci on another chromosome(s) appear to contribute to preference, as indicated by the partially intermediate preferences of some hybrid crosses. The overall differences in preference in the reciprocal interspecific hybrids were restricted to differences in the distribution of eggs laid among the local host plants of these two Papilio species; the reciprocal crosses did not differ in the small percentage of eggs laid on a novel potential host species. The variation in host selection found among the isofemale strains reinforces earlier results for these strains, indicating that there is genetic variation in host selection within these populations. Overall, the results indicate that the evolution of oviposition preference in these species involves genetic changes at two or more chromosomes with the X chromosome playing an important role in determining preference.  相似文献   

13.
大林姬鼠的核型与B染色体研究   总被引:2,自引:0,他引:2  
王金星  赵小凡  齐洪英  高兴善  张来  关振学  王春海 《兽类学报》2000,20(4):289-295,T001,T002
采用骨髓染色体制片法 ,对分布于吉林长白山、山东泰山和陕西秦岭的大林姬鼠的染色体组型、C -带、G -带和减数分裂的染色体行为进行了观察分析。发现 3个地区标本的染色体数目存在着显著差异。东北标本的 2n =48~ 51 ,A组染色体为 48条 ,均由端着丝粒染色体组成 ,同时具有 1~ 3条B染色体 ,其形态为中着丝粒染色体 ;山东标本的 2n =53~ 62 ,A染色体同样为 48条端着丝粒染色体组成 ,具 5~ 1 4条B染色体 ,其中 1条为较大的中着丝粒染色体 ,其余为小的中着丝粒和点状染色体。秦岭标本 2n =48~ 49,A染色体为 48条端着丝粒染色体 ,具 1条形态很小的端着丝粒B染色体。3地标本的B染色体均存在个体间和个体内变异。长白山标本B染色体的细胞克隆数目为 1~ 2 ,泰山标本为 1~ 3。在 3地标本中 ,中着丝粒B染色体呈现C -带阴性 ,点状B染色体呈中度深染。通过对减数分裂的观察 ,多数B染色体是以单价体的形式存在。中国长白山种群的B染色体数目和形态与朝鲜种群相似。与欧洲种群存在着显著差异。泰山种群的B染色体数目和形态与朝鲜种群及欧洲种群均存在显著差异。泰山种群与秦岭标本同属华北亚种 ,但它们的B染色体形态和数目差别很大。  相似文献   

14.
X and Y chromosomes can diverge when rearrangements block recombination between them. Here we present the first genomic view of a reciprocal translocation that causes two physically unconnected pairs of chromosomes to be coinherited as sex chromosomes. In a population of the common frog (Rana temporaria), both pairs of X and Y chromosomes show extensive sequence differentiation, but not degeneration of the Y chromosomes. A new method based on gene trees shows both chromosomes are sex‐linked. Furthermore, the gene trees from the two Y chromosomes have identical topologies, showing they have been coinherited since the reciprocal translocation occurred. Reciprocal translocations can thus reshape sex linkage on a much greater scale compared with inversions, the type of rearrangement that is much better known in sex chromosome evolution, and they can greatly amplify the power of sexually antagonistic selection to drive genomic rearrangement. Two more populations show evidence of other rearrangements, suggesting that this species has unprecedented structural polymorphism in its sex chromosomes.  相似文献   

15.
Aradottir GI  Angus RB 《Hereditas》2004,140(3):185-192
The karyotypes of seven Ilybius species are described and illustrated. All except I. wasastjernae have a basic karyotype of 34 autosomes plus sex chromosomes which are X0 ( male symbol ), XX ( female symbol ), with the X chromosome among the largest in the nucleus. This karyotype appears to be the norm for Ilybius and supports the transfer of the species concerned from Agabus to Ilybius. I. wasastjernae has 36 autosomes and the X chromosome is the smallest in the nucleus and its karyotype is unlike any other known karyotype in either Ilybius or Agabus. In most of the species studied no intraspecific variation has been detected. Exceptions are I. chalconatus, where there is one inversion polymorphism in one of the autosomes, and I. montanus whose autosome number has been found to vary from 29 to 34. Such variation is highly unusual among Coleoptera. The variation results from fusion-fission polymorphisms involving three different pairs of autosomes. In each case the fusions may be homozygous, heterozygous or absent. All populations investigated were polymorphic for some of the fusions, but only one (La Salceda, Spain) included individuals lacking all fusions. The frequencies of fused and unfused chromosomes were analysed in three English populations. In only one case was there a departure from the values expected from the Hardy-Weinberg equilibrium, and this population also showed a significant difference from the other two. Meiosis in males heterozygous for fusions involves the production of trivalents in first division, but results in the production of abundant sperm, with no evidence of chromosomal abnormalities in second metaphase, or of degenerating cells as a result of failed meiosis. The three fusions sites are consistent in all the populations studied, and it is concluded that these fusions represent unique historical events rather than current chromosomal instability.  相似文献   

16.
Chromosome evolution in Australian rodents   总被引:3,自引:0,他引:3  
The chromosome complements of 188 specimens of 29 species of Australian murid rodents belonging to the subfamilies Pseudomyinae and Hydromyinae and the Uromys/Melomys group have been compared. At least one specimen of 18 different species was successfully C-banded. — The autosomal complements of many (9) diverse Pseudomyinae, one species of Melomys and one Hydromyinae proved to be identical, comprising 48 elements in the diploid set, the two smallest autosomal pairs of which are metacentric. No other karyotype is common to more than one species. From this we conclude that these three groups have been derived from a common ancestor which also possessed such a karyotype. The genus Zyzomys is exceptional since it possesses only 44 elements and lacks the two smallest metacentrics. — Karyotypic evolution within this apparently single phyletic line has been remarkably conservative, only three rearrangements being required to derive the most divergent karyotype. Moreover most of the observed rearrangements involve pericentric inversions and only one example of a fusion was found. Considerable differences in heterochromatin content, as determined by C-banding, occur between species however. Two species proved exceptional in this respect, namely Notomys cervinus and Uromys caudimaculatus. N. cervinus possesses numerous heterochromatic short arms. In U. caudimaculatus, there is a striking difference between northern and southern populations; in the former heterochromatin is present principally in the telomeric areas of the conventional A-chromosomes whereas in the latter it is found as separate supernumerary chromosomes. — In contrast to the autosomes, the X and Y chromosomes show high inter- and intra-specific variability in both size and morphology. All of this variability can be explained in terms of variation in heterochromatin content. Moreover the amount of heterochromatin in the X and Y chromosomes is highly correlated both within and between species. The Y chromosome of Uromys caudimaculatus is, however, distinctive in that it lacks C-banding.  相似文献   

17.
Four populations of Astyanax scabripinnis (Pisces, Characidae) were analyzed for B chromosome features. This species contains a metacentric macrochromosome (BM), similar in size to the first chromosome of the karyotype, besides two variant forms, a large submetacentric (BSM) and a small metacentric (Bm), both showing a reduced frequency. These variant forms were observed only in the populations from the Campos do Jordão region (São Paulo State, Brazil), although not present in all the populations sampled. The three B chromosome forms are heterochromatic and at least the BM and BSM are also GC-rich, as evidenced by C-banding and chromomycin A3 staining. In spite of the morphological similarity between the BM form and the first chromosome pair, they differ in the G-banding pattern, which does not favor a possible relationship among these chromosomes. FISH with a telomeric DNA probe evidenced signals on the terminal region of all chromosomes, including the Bs. Interstitial telomeric bands, indicative of some chromosomal rearrangements such as translocation or tandem fusion in the origin of the B chromosomes, were not observed. BSM and Bm are probable derivative B chromosome forms from an ancestral BM chromosome, showing a restricted occurrence and low frequency in the populations.  相似文献   

18.
Among the Anopheles (Cellia) maculatus group of Oriental mosquitoes, positive assortative mating occurs within sympatric and synchronous populations of An.willmori and An.pseudowillmori in the presence of populations of An.maculatus and An.sawadwongporni, judged from the occurrence of inversion homozygotes and the absence of any heterozygotes in their distinctive, polytene chromosomes. Genotypic frequencies for enzyme electromorphs give additional evidence for the species status of An.pseudowillmori and a practical means of identification in field studies of malaria vectors. Autosomal rearrangements are referred to those of An.stephensi which is unique for 4y. An.willmori differs by a single inversion, 4x; An.pseudowillmori by three Arm 2 inversions; and An.dispar by one Arm 2 inversion and 4x. Fixed autosomal rearrangements in the Maculatus group are summarized and their phylogenetic distribution suggests some unknown, intrinsic mechanism by which genome structure is disrupted in association with speciation events. This could be relevant to the potential genetic manipulation of malaria vectors.  相似文献   

19.
Two populations of Sphaerium corneum were sampled from River Vilnelė and small pond in Vilnius, Lithuania. The chromosomes were studied using conventional Giemsa staining and karyometric analysis. Inter- and intra-individual variation in the diploid chromosome numbers was revealed and two different sources of chromosome variability were identified: B chromosomes and the structural changes of chromosomes of the basic (A) set. The chromosome set of the more common karyotypic form, 2 n  = 30, found in both populations, consists of all biarmed metacentric and meta-submetacentric chromosomes of gradually decreasing size. Small, biarmed, mitotically unstable B chromosomes were found in the cells of this karyotypic form. Specimens with 2 n  = 36 were found only in pond. No B chromosomes were detected in their cells. The karyotype is characterized by presence of two pairs of medium telocentrics and four pairs of small subtelocentrics. The remaining chromosomes are biarmed. Robertsonian fusions appear to be involved in formation of two karyotypic forms of S. corneum . DNA sequence analyses showed that ITS1 is identical in both karyotypic forms. On the other hand, differences in 16S sequence were revealed and two haplotypes, corresponding to two karyotypic forms, were identified. The present study opens new perspectives in establishing species-specific characters for confident identification of Sphaerium species and provides insights to the genetic intraspecific variability and possible mechanisms of speciation.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 53–64.  相似文献   

20.
Silene latifolia is a model plant for studies of the early steps of sex chromosome evolution. In comparison to mammalian sex chromosomes that evolved 300 mya, sex chromosomes of S. latifolia appeared approximately 20 mya. Here, we combine results from physical mapping of sex-linked genes using polymerase chain reaction on microdissected arms of the S. latifolia X chromosome, and fluorescence in situ hybridization analysis of a new cytogenetic marker, Silene tandem repeat accumulated on the Y chromosome. The data are interpreted in the light of current genetic linkage maps of the X chromosome and a physical map of the Y chromosome. Our results identify the position of the centromere relative to the mapped genes on the X chromosome. We suggest that the evolution of the S. latifolia Y chromosome has been accompanied by at least one paracentric and one pericentric inversion. These results indicate that large chromosomal rearrangements have played an important role in Y chromosome evolution in S. latifolia and that chromosomal rearrangements are an integral part of sex chromosome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号