首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The little fire ant Wasmannia auropunctata is able to develop highly dominant populations in disturbed areas of its native range, with a resulting negative impact on ant diversity. We report here on the tolerance of such populations towards several fungus-growing ants of the genus Cyphomyrmex (rimosus complex) in French Guiana. This tolerance is surprising given the usually high interspecific aggressiveness of W. auropunctata when dominant. In order to understand the mechanisms behind such proximity, aggressiveness tests were performed between workers of the different species. These behavioural assays revealed a great passivity in Cyphomyrmex workers during confrontations with W. auropunctata workers. We also found that the aggressiveness between W. auropunctata and two Cyphomyrmex species was more intense between distant nests than between adjacent ones. This dear-enemy phenomenon may result from a process of habituation contributing to the ants' ability to coexist over the long term.  相似文献   

2.
A colony of social insects is an excellent model for investigating the organization of responses of subunits (i.e. colony members) with limited skills into sophisticated collective behavior. The defence system of Lasius niger ant colonies is well organized in a context-dependent way. The proportion of fighting ants to fleeing ants changes gradually according to the importance of the area being defended, and was higher where ants tended honeydew-rich aphids and on trails for foraging with heavy traffic, than where ants were walking alone or on trails with light traffic. Although there were intrinsic differences in aggressiveness between individual ants, the differences in aggressive responses between defended areas was not due to the presence of highly aggressive or timid individuals in each area. Instead, it was due to a change in aggressiveness of individuals in response to external conditions. The cue that altered individual aggressiveness was the presence of surrounding nest-mates, rather than the presence of aphids. We concluded that the defence system of this ant species consists of three processes: (i) a recruiting system that allocates more workers to more valuable resources; (ii) individual ants following a simple decision rule to become more aggressive in response to increased numbers of nest-mates nearby (hence aggressive behavior reflecting the importance of each area to the colony); and (iii) variability in individual responses causing a gradual change in the proportion of fighting ants responding to a threat.  相似文献   

3.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

4.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

5.
To determine if a type of unicoloniality exists in the fire ant Solenopsis saevissima in its native range, we conducted intraspecific aggressiveness tests in French Guiana between workers originating from 15 human-disturbed sites. We identified two "colonial groups" spread over 54 km and 12.5 km, respectively. Workers from the same group never attacked each other, but inter-group confrontations resulted in a high level of aggressiveness. These large "colonial groups" enhances the threat occasioned by S. saevissima for both agriculture and the environment.  相似文献   

6.
1. The spread of Argentine ants, Linepithema humile (Mayr), in introduced areas is mainly through the displacement of native ant species owing to high inter‐specific competition. In South Africa, L. humile has not established in the climatically suitable eastern and northern escarpments dominated by the African big headed ant, Pheidole megacephala (Fabricius), probably owing to local biotic resistance. 2. Inter‐specific aggression, at the individual and colony level, and competition for a shared resource were evaluated in the laboratory. 3. Aggression between the two ant species was very high in all of the assays. Both species suffered similar mortality rates during one‐on‐one aggression assays, however, during symmetrical group confrontations, L. humile workers showed significantly higher mortality rates than P. megacephala workers. During asymmetrical group confrontations both species killed more of the other ant species when they had numeric advantage. Both ant species located the shared resource at the same time; however, once P. megacephala discovered the bait, they displaced L. humile from the bait through high inter‐specific aggression, thereafter dominating the bait for the remainder of the trial. 4. The results demonstrate the potential of P. megacephala to prevent the establishment and survival of incipient L. humile colonies through enhanced resource competition and high inter‐specific aggression. This is the first study to indicate potential biotic resistance to the spread of L. humile in South Africa.  相似文献   

7.
Theoretical possibility of experimental modeling of learned (premediated) aggression developing in human after experience of aggression is considered. The sensory contact technique increases aggressiveness in male mice and allows aggressive type of behavior to be formed as a result of repeated experience of victories in daily agonistic confrontations. Some behavioral domains confirm the development of learned aggression in males similar to those in humans. The features are: repeated experience of aggression reinforced by victories; elements of learned behavior after period of confrontations; intent, measured by increase of the aggressive motivation prior agonistic confrontation; decreased emotionality estimated by parameters of open field behavior. Relevant stimuli provoke demonstration of aggression. This review summarized data on the influence of positive fighting experience in daily intermale confrontations on the behavior, neurochemistry and physiology of aggressive mice (winners). This sort of experience changes many characteristics in individual and social behaviors, these having been estimated in different tests and in varied situations. Some physiological parameters are also changed in the winners. Neurochemical data confirm the activation of brain dopaminergic systems and functional inhibition of serotonergic system in winners under influence of repeated experience of aggression. The expression of the neurochemical and behavioral changes observed in winners has been found dependent on the mouse strain and on the duration of their agonistic confrontations. Similarities in mechanisms of learned aggression in humans and mice are considered.  相似文献   

8.
Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success.  相似文献   

9.
Ants are widespread in all terrestrial habitats, and competitive interactions between species are common. Although redistribution of food within a colony may buffer the negative effects of temporary resource shortages, colony functionality can be compromised when famine is prolonged. One of the possible effects of famine is impairment of the fighting ability of species, with cascade effects on community. Here, we investigated whether food shortage alters the fighting ability of workers of three dominant species in the Mediterranean area: the invasive alien species, Lasius neglectus and Linepithema humile, and one highly polydomous autochthonous species belonging to the Tapinoma nigerrimum complex. We performed laboratory tests of interspecific one-on-one aggression and pairwise group contests between species, with all possible combinations of artificially satiated and starved groups. Results showed that starvation had a scarce effect on the individual aggressiveness in all three species. Similarly, the outcomes of the group fights were only lightly affected, but with an important exception. The positions of species in the fighting hierarchies were in most cases clear and linear, with L. neglectus at the top. However, we found that L. humile and L. neglectus showed equal mortality when one of the two species was starved and the other satiated. Although we investigated only one aspect of competition, that is, fighting ability, our results provide a piece of the complex jigsaw of competitive interactions of ants, and suggest that food deprivation can be a determinant that alters the relationships between ants and promotes or hampers the coexistence of dominant species.  相似文献   

10.
The cooperation and aggression between five laboratory colonies of Monomorium pharaonis were compared using an aggressiveness test and pupa-carrying test in laboratory arenas. The colonies were derived from field collections in different parts of Europe and USA. Generally, inter-colony aggressiveness was low and acceptance of pupae from other colonies was high. Workers from one colony (Lužiny, CZ), however, frequently displayed aggressive behavior when paired with workers from other colonies, and the Lužiny pupae were avoided by workers of other colonies in pupa-carrying tests. Behavioral tests were only partly consistent with the phylogenetic relatedness of ants because the Wisconsin colony (USA) grouped with the Lužiny colony (and not with the other three colonies) in the phylogenetic analysis but grouped with the other three colonies in the behavioral tests.  相似文献   

11.
Predicting the outcome of competitive interactions is a fundamental goal in ecology. Ecological stoichiometry, which relates nutrient balance to ecological processes, provides a framework for identifying mechanistic links among macronutrient availability, nutritional physiology and competitive performance. Because carbohydrates serve as a principal metabolic fuel, carbohydrate scarcity may impinge upon behaviours affecting competitive dominance (e.g. aggression, activity) to a greater extent than deficiencies of protein or other nutrients used preferentially for growth. Here, we tested this prediction with a diet manipulation study involving laboratory colonies of Argentine ants (Linepithema humile), a widespread and aggressive invasive species. The availability of both sucrose and insect prey influenced brood production and worker survival after three months. However, colonies became less aggressive and less active only when deprived of sucrose (but not prey). Scarcity of sucrose (but not prey) was also associated with reduced fat mass in individual workers. These data provide the first experimental support that carbohydrate scarcity compromises aggression and activity in ants, and illustrate, in principle, how access to carbohydrate-rich resources (e.g. plant exudates, hemipteran honeydew) might influence behavioural investments that contribute to competitive performance. Such investments might be especially important for invasive ants, given their aggressiveness and tendency to interact with honeydew-producing Hemiptera.  相似文献   

12.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

13.
We examined intraspecific colonial aggressiveness in Wasmannia auropunctata (Roger), a tramp species originating from the neotropics. By observing the results of one-on-one confrontations, we compared the behavioral responses of workers originating from six New Caledonian locations (introduced range) and four Brazilian cocoa plantations (original range). We recorded interindividual aggressive behavior on four levels ranging from physical contact, with no aggressive response, to prolonged aggressiveness, including stinging by one or both ants. In Brazil, we often observed high intraspecific aggressiveness between populations originating from distant locations, indicating that W. auropunctata may behave as a multicolonial species in its native range. In New Caledonia, paired encounters resulted in low agonistic behavior, as shown by the absence of full attacks (which include stinging by one or both opponents). Our results suggest that W. auropunctata behaves as a single supercolony throughout New Caledonia and that the scale of its unicoloniality (widespread colonies with interconnected nests without aggressiveness between workers originating from distant areas) is different in introduced and native populations. According to the present study, it seems likely that differences in intraspecific aggressiveness between native and introduced populations of W. auropunctata contribute to its invasive success.  相似文献   

14.
《Behavioural processes》1987,14(1):35-47
The development of interspecific recognition and the expression of behavioral plasticity as a function of phyletic distance and the natural environment in which the ants live were investigated.An experimental model involving artificial mixed societies was used in this study. These mixed societies were produced by combining ants from two out of the 11 investigated species. The possibilities thus ranged from situations in which phylogenetically similar ants that live in the same biotype were combined, to those in which the species differ significantly in terms both of phyletic distance and of biotope.The interspecific groups were established in a neutral environment with adult ants less than 24 hours old. The results concerned agonistic and non-agonistic behaviors during the first 15 days. Both the frequency and types of interaction were shown to vary according to the type of group. Two species that share a common habitat are less aggressive and display more non-agonistic behavior than when the species come from different habitats. On the other hand, although aggressive behaviors increase with greater phyletic distance between the species, non-agonistic interactions remain constant.As a general rule, interactions between species from differing environments seem to be determined by the phyletic distance, whereas those between species from the same biotope are controlled by interspecific competition. There is a gradual change in these interactions dependent on the duration of the mixed association.  相似文献   

15.
Individuals of many species spend a large portion of their lives within groups of conspecifics. Within such groups, there can be considerable diversity in size and other traits, with some, perhaps larger or stronger, animals laying claim to a greater than fair share of available resources. We use the word quality as a single measure of individual animal phenotypes within such a group and develop a model of resource division through contests between animals of differing quality. We investigated the effect of varying environmental factors on the level of aggressiveness used in such contests and the division of resources among the group. A numerical example shows that maximum discriminations between individuals on the basis of quality occur for medium-sized costs of aggressive encounters, but resources are divided more equitably at either extreme, when costs are either high or low. Received: April 9, 2001 / Accepted: September 16, 2001  相似文献   

16.
Male aggressiveness can affect male reproductive success both directly by increasing competitiveness and indirectly through female preference. Assuming that significance of male aggressiveness in species having different mating systems can be different, we studied how male aggressiveness relates to sexual attractiveness in polygynous rodents, the water vole (Arvicola terrestris) and the house mouse (Mus musculus), and in a monogamous species, the steppe lemming (Lagurus lagurus). Our analysis revealed that the relation between odor attractiveness and aggressiveness is nonlinear. In polygynous species, males are more aggressive, so females opt for aggressive, albeit not too aggressive, males. In the monogamous steppe lemming, males show low level of intermale aggressiveness, and the most attractive are slightly aggressive males who have greater reproductive potential.  相似文献   

17.
Bell AM  Sih A 《Ecology letters》2007,10(9):828-834
A perplexing new question that has emerged from the recent surge of interest in behavioural syndromes or animal personalities is – why do individual animals behave consistently when behavioural flexibility is advantageous? If individuals have a tendency to be generally aggressive, then a relatively aggressive individual might be overly aggressive towards offspring, mates or even predators. Despite these costs, studies in several taxa have shown that individuals that are more aggressive are also relatively bold. However, the behavioural correlation is not universal; even within a species, population comparisons have shown that boldness and aggressiveness are correlated in populations of sticklebacks that are under strong predation pressure, but not in low predation populations. Here, we provide the first demonstration that an environmental factor can induce a correlation between boldness and aggressiveness. Boldness under predation risk and aggressiveness towards a conspecific were measured before and after sticklebacks were exposed to predation by trout, which predated half the sticklebacks. Exposure to predation generated the boldness–aggressiveness behavioural correlation. The behavioural correlation was produced by both selection by predators and behavioural plasticity. These results support the hypothesis that certain correlations between behaviours might be adaptive in some environments.  相似文献   

18.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

19.
Territoriality and social organization were examined in relation to different genetic dispositions for aggressive behaviour. The animals used in the study were male mice of the 51st and 52nd generation of selection for high (Turku Aggressive, TA) and low (Turku Non-Aggressive, TNA) levels of aggressiveness. The level of aggressiveness of the animals was assessed by means of individual tests with non-aggressive standard opponents, after which they were allowed to form individual territories in a 102 times 204 times 90 cm enclosure. TA and TNA males were placed in different enclosures. After 2 wk, when the partitions between individual pens were removed, the behaviour of the animals was observed for a 7-d period. Excessive fighting between the highly aggressive TA males occurred, resulting in the formation of dominant-subordinate relationships. A great number of attacks inflicted were found to be associated with dominance in the colony, and correlated with a high level of aggressiveness when the animals were individually tested for aggression after having been in colony environments. The level of aggressiveness of the TA males that had become subordinates had significantly decreased. The TNA males fought less and were more often found to stay in their original territory for the entire period of observation. The results suggest that different genotypes for aggression arc related to differences in territoriality and social organization in mice.  相似文献   

20.
The related ants Tetramorium caespitum and T. impurum mark their foraging area in a species-specific, home range and short-lasting manner. Indeed, ants reaching a new area have a slow linear speed which increases during the marking. Conspecific ants are arrested and attracted by marked areas, while heterospecific ants are reluctant to visit them. However, when the latter do visit marked areas, they move more quickly and less sinuously than conspecific ants and do not stay on the areas. The marking is performed in about 3 min by T. caespitum and in 3 to 6 min by T. impurum. If not reinforced, the marking vanishes in the same time intervals. Neither poison gland nor last sternite extracts reproduce the activity of naturally marked areas, whereas a Dufour gland extract does exactly that. Foraging ants touch the ground with the tip of their gaster. Consequently, we can postulate that the workers mark their foraging area with the contents of this gland, which is associated with the sting apparatus, and that they deposit with the extremity of the gaster. Alien conspecific ants are seldom aggressive to one another, even on marked areas. When encountering each other on unmarked areas, heterospecific ants present some aggressive reactions. On marked areas, their aggressiveness is enhanced and intruder ants are restless, while resident ones walk freely. On ground marked by T. impurum, ants of this species are more aggressive than antagonistic T. caespitum workers. The marking of foraging areas thus induces defense against heterospecifics but not against conspecific ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号