共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhen Zhu Jianchao Zhang Yanliang Wu Wei Ran Qirong Shen 《World journal of microbiology & biotechnology》2013,29(11):2105-2114
2.
Fed-batch cultures were performed to maximize the alpha-amylase activity in a bioreactor. Kinetic equations containing a catabolite repression effect were used to model the enzyme formation from Bacillus amyloliquefaciens. Fed-batch culture experiments were performed using maltose to implement the optimal feeding strategy. Optimal fed-batch culture based on sequential parameter estimation was performed successfully using off-line analysis while the fermentation was in progress. The enzyme activity from the fed-batch culture employing maltose was higher than that of the batch culture by 60%. Enzyme production using starch showed similar trends to those obtained using maltose. 相似文献
3.
Bindu Battan Jitender Sharma R. C. Kuhad 《World journal of microbiology & biotechnology》2006,22(12):1281-1287
Bacillus pumilus ASH produced a high level of an extracellular and thermostable xylanase enzyme when grown using solid-state fermentation (SSF). Among a few easily available lignocellulosics tested, wheat bran was found to be the best substrate (5,300 U/g of dry bacterial bran). Maximum xylanase production was achieved in 72 h (5,824 U/g). Higher xylanase activity was obtained when wheat bran was moistened with deionized water (6,378 U/g) at a substrate-to-moisture ratio of 1:2.5 (w/v). The optimum temperature for xylanase production was found to be 37°C. The inoculum level of 15% was found to be the most suitable for maximum xylanase production (7,087 U/g). Addition of peptone stimulated enzyme production followed by yeast extract and mustard oil cake, whereas glucose, xylose and malt extract greatly repressed the enzyme activity. Repression by glucose was concentration-dependent, repressing more than 60% of the maximum xylanase production at a concentration of 10% (w/v). Cultivation in large enamel trays yielded a xylanase titre that was slightly lower to that in flasks. The enzyme activity was slightly lower in SSF than in SmF but the ability of the organism to produce such a high level of xylanase at room temperature and with deionized water without addition of any mineral salts in SSF, could lead to substantial reduction in the overall cost of enzyme production. This is the first report on production of such a high level of xylanase under SSF conditions by bacteria. 相似文献
4.
Production of Bacillus thuringiensis (Bt) was standardized on wheat bran based media in 250 ml Erlenmeyer flasks. Scale-up of Bt production on the best medium in plastic tubs with aeration at 8 h intervals starting 16 h after incubation yielded a significant increase in spore count and toxin content of the product. Maximum lysis of Bt cells was obtained by 60 h of incubation at 30 degrees C. This protocol was suitable for production of Bt strains and local isolates. The Bt produced proved highly effective at 0.1% concentration against larvae of castor semilooper, Achaea janata L, resulting in complete mortality by three days in laboratory bioassays. In field trials, the population of castor semilooper larvae on the castor bean crop was reduced significantly by three days after application. The cost for material production of 1 kg of Bt was approximately US dollars 0.70. 相似文献
5.
I. Besson C. Creuly J. B. Gros C. Larroche 《Applied microbiology and biotechnology》1997,47(5):489-495
2,5-Dimethylpyrazine (2,5-DMP) and tetramethylpyrazine (TTMP) were produced using Bacillus subtilis IFO 3013 grown on soybeans. Solid-state cultivations were carried out either in 100-ml bottles or in a fixed-bed column reactor, both systems being at 27 °C. Optimization studies showed that the best way to produce the two above aroma compounds involved two separate processes. 2,5-DMP was obtained using soybeans enriched with 75 g threonine/kg initial dry weight (i.d.w.), giving 0.85 g metabolite/kg i.d.w. after 6 days. TTMP production involved addition of 90 g/kg i.d.w. acetoin to soybeans, and 2.5 g/kg i.d.w. was recovered after 14 days. These results demonstrated the suitability of solid-state cultivation for production of high-added-value compounds. Received: 30 September 1996 / Received revision: 23 December 1996 / Accepted: 30 December 1996 相似文献
6.
Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for cellulase production by Trichoderma reesei QM9414 and T. reesei MCG77 in solid-state fermentation using rice bran as substrate. Initial pH, moisture content and temperature were optimized using filter paper activity (FPA) as response. Statistical analysis of the results for T. reesei QM9414 showed that only moisture content had significant effect on cellulase activity and had a linear effect on enzyme activity (maximum enzyme activities were obtained at 70% moisture content). The results for T. reesei MCG77 showed that temperature and moisture content were the most significant parameters for cellulase activity. The optimum cellulase production was in the temperature range of 25-30 degrees C and moisture content between 55% and 70%. After the optimization, the FPA in T. reesei MCG77 was increased by 2.5 folds compared to that of T. reesei QM9414. 相似文献
7.
8.
绿色木霉ZY-1固态发酵产纤维素酶 总被引:1,自引:0,他引:1
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。 相似文献
9.
Bacillus subtilis RB14-CS, which suppresses the growth of various plant pathogens in vitro by producing the lipopeptide antibiotic iturin A, was cultured using soybean curd residue, okara, a by-product of tofu manufacture in solid-state fermentation. After 4 days incubation, iturin A production reached 3,300 mg/kg wet solid material (14 g/kg dry solid material), which is approximately tenfold higher than that in submerged fermentation. When the okara product cultured with RB14-CS was introduced into soil infested with Rhizoctonia solani, which is a causal agent of damping-off of tomato, the disease occurrence was significantly suppressed. After 14 days, the number of RB14-CS cells remained in soil at the initial level, whereas almost no iturin A was detected in soil. As the okara cultured with RB14-CS exhibited functions of both plant disease suppression and nutritional effect on tomato seedlings, this product is expected to contribute to the recycling of the soybean curd residue. 相似文献
10.
Satbir Singh 《Preparative biochemistry & biotechnology》2016,46(7):717-724
Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728?U?ml?1), which was followed by gram husk (714?U?ml?1), mustard cake (680?U?ml?1), and soybean meal (653?U?ml?1). Plackett–Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020?U?ml?1). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes. 相似文献
11.
Alkaline protease production using isolated Bacillus circulans under solid-state fermentation environment was optimized by using Taguchi orthogonal array (OA) experimental design (DOE) methodology to understand the interaction of a large number of variables spanned by factors and their settings with a small number of experiments in order to economize the process optimization. The software-designed experiments with an OA worksheet of L-27 was selected to optimize fermentation (temperature, particle size, moisture content and pH), nutrition (yeast extract and maltose), and biomaterial-related (inoculum size and incubation time) factors for the best production yields. Analysis of experimental data using Qualitek-4 methodology showed significant variation in enzyme production levels (32,000-73,000 units per gram material) and dependence on the selected factors and their assigned levels. Validation of experimental results on alkaline protease production by this bacterial strain based on DOE methodology revealed 51% enhanced protease production compared to average performance of the fermentation, indicating the importance of this methodology in the evaluation of main and interaction effects of the selected factors individually and in combination for bioprocess optimization. 相似文献
12.
13.
Ashwani Sanghi Neelam Garg Jitender Sharma Kalika Kuhar Ramesh C. Kuhad Vijay K. Gupta 《World journal of microbiology & biotechnology》2008,24(5):633-640
Alkalophilic Bacillus subtilis ASH produced high levels of xylanase using easily available inexpensive agricultural waste residues such as wheat bran, wheat
straw, rice husk, sawdust, gram bran, groundnut and maize bran in solid-state fermentation (SSF). Among these, wheat bran
was found to be best substrate. Xylanase production was highest after 72 h of incubation at 37 °C and at a substrate to moisture
ratio of 1:2 (w/v). The inoculum level of 15% resulted in maximum production of xylanase. The enzyme production was stimulated
by the addition of nutrients such as yeast extract, peptone and beef extract. In contrast, addition of glucose and xylose
repressed the production of xylanase. The extent of repression by glucose (10%, w/v) was 81% and it was concentration-dependent.
Supplementation of the medium with 4% xylose caused 59% repression. Under optimized conditions, xylanase production in SSF
(8,964 U of xylanase/g dry wheat bran) was about twofold greater than in submerged fermentation. Thus, B. subtilis produced a very high level of xylanase in SSF using inexpensive agro-residues, a level which is much higher than that reported
by any other bacterial isolate. Furthermore, the enzyme was produced at room temperature and with tap water without the addition
of any mineral salt in SSF, leading to a marked decrease in the cost of xylanase production, which enhances its industrial
potential. 相似文献
14.
Comparisons were made for alpha-galactosidase production using red gram plant waste (RGPW) with wheat bran (WB) and other locally available substrates using the fungus Aspergillus oryzae under solid-state fermentation (SSF). RGPW proved to be potential substrate for alpha-galactosidase production as it gave higher enzyme titers (3.4 U/g) compared to WB (2.7 U/g) and other substrates tested. Mixing WB with RGPW (1:1, w/w) resulted enhanced alpha-galactosidase yield. The volume of moistening agent in the ratio of 1:2 (w/v), pH 5.5 and 1 ml (1 x 10(6) spores) of inoculum volume and four days incubation were optimum for alpha-galactosidase production. Increase in substrate concentration (RGPW+WB) did not decrease enzyme yield in trays. 相似文献
15.
Rice bran was superior to other proteinaceous substrates for protease production by Rhizopus oligosporus ACM 145F in solid-state fermentation. Maximum protease yield was after 72 h. The optimal initial moisture content was 47% (aw=0.97). Dried, ground and resuspended fermented rice was the most pratical and effective inoculum preparation, although, in the laboratory, spore suspensions prepared directly from agar slants were more convenient. Inoculum density (from 102 to 107 spores/g substrate) and age (3, 5, 7 and 9 days) had little effect on protease yield.The authors are with the Department of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia 相似文献
16.
Sathish T Lakshmi GS Rao ChS Brahmaiah P Prakasham RS 《Letters in applied microbiology》2008,47(4):256-262
Aim: Investigation of mixture‐design impact on glutaminase production by isolated Bacillus sp. Methods and Results: An augmented simplex centroid design was used to optimize a three (wheat bran, Bengal gram husk and palm seed fibre) component mixture for glutaminase production. Selected substrate materials showed impact on glutaminase production values at individual level by Bengal gram husk [2789 U gds?1 (gram dry substrate] and in two‐level combination with wheat bran and Bengal gram husk (maximum of 3300 U gds?1). Conclusion: Bengal gram husk is the most suitable substrate medium for glutaminase production by Bacillus sp. Maximum glutaminase production is achieved using solid‐substrate mixture at two‐level combinations in the ratio of 66 : 34 for Bengal gram husk and wheat bran, respectively. Significance and Impact of the Study: The present study has significance in large‐scale production of glutaminase at commercial level with the use of multi‐substrate rather than single‐substrate/support material. 相似文献
17.
Ponnuswamy Vijayaraghavan Sophia Lazarus Samuel Gnana Prakash Vincent 《Saudi Journal of Biological Sciences》2014,21(1):27-34
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g−1). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40–50 °C and pH 6–9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca2+, Na+ and Mg2+ showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view. 相似文献
18.
Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus 总被引:2,自引:0,他引:2
Roopesh K Ramachandran S Nampoothiri KM Szakacs G Pandey A 《Bioresource technology》2006,97(3):506-511
Comparisons were made for phytase production using wheat bran (WB) and oilcakes as substrates in solid-state fermentation (SSF) by Mucor racemosus NRRL 1994. WB was also used as mixed substrate with oil cakes. Sesame oil cake (SOC) served as the best carbon source for phytase synthesis by the fungal strain as it gave the highest enzyme titres (30.6 U/gds). Groundnut oil cake (GOC) also produced a reasonably good quantity of enzyme (24.3 U/gds). Enzyme production on WB was surprisingly much less (almost 3.5 times less in comparison to SOC). Mixing WB with SOC (1:1 ratio) resulted in better phytase activity (32.2 U/gds). Optimization of various process parameters such as incubation time, initial moisture content and inoculum concentration was carried out using the single variable mode optimization technique. Under optimized conditions, the production of phytase reached 44.5 U/gds, which was almost 1.5-fold higher than the highest yield obtained with any individual substrate used in this study and was more than 4-fold higher than that obtained from WB. 相似文献
19.
20.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth. 相似文献