首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several aspects of the interaction of xanthine oxidase with arsenite are investigated. Room temperature potentiometric titrations using EPR to monitor Molybdenum reduction reveal midpoint potentials of -225 mV for the Mo(VI)-arsenite/Mo(V)-arsenite couple and -440 mV for the Mo(V)-arsenite/Mo(IV)-arsenite couple at pH 8.3. Under the same conditions, the values for native enzyme are -395 mV and -420 mV, respectively. The predicted effects of the altered Mo(VI)/Mo(V) potential on the distributions of reducing equivalents in partially reduced enzyme are compared with the experimentally observed effects in optical experiments. The bleaching that occurs on reduction of the chromophore that is generated when arsenite binds to oxidized enzyme is characterized and found to be associated with reduction of Mo(V)-arsenite to Mo(V)-arsenite. This probe enables determination of the midpoint potential for this conversion using optical data. From such data at a series of pH values ranging from 6.15 to 9.9, a pH dependence of -60 mV/pH unit increase is determined for this couple above pH 7. The ability of arsenite to bind to reduced xanthine oxidase and to desulfo enzyme are also investigated. Reduced active enzyme binds arsenite much more tightly (Kd less than 0.1 microM) and more rapidly than does oxidized active enzyme (Kd = 8 microM); oxidized desulfo enzyme binds arsenite almost as tightly (Kd = 20 microM) as does the oxidized active enzyme.  相似文献   

2.
The heterogeneity of arginases in rat tissues.   总被引:11,自引:0,他引:11       下载免费PDF全文
1. The mid-point reduction potentials of the various groups in xanthine oxidase from bovine milk were determined by potentiometric titration with dithionite in the presence of dye mediators, removing samples for quantification of the reduced species by e.p.r. (electron-paramagnetic-resonance) spectroscopy. The values obtained for the functional enzyme in pyrophosphate buffer, pH8.2, are: Fe/S centre I, -343 +/- 15mV; Fe/S II, -303 +/- 15mV; FAD/FADH-; -351 +/- 20mV; FADH/FADH2, -236 +/-mV; Mo(VI)/Mo(V) (Rapid), -355 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -355 +/- 20mV. 2. Behaviour of the functional enzyme is essentially ideal in Tris but less so in pyrophosphate. In Tris, the potential for Mo(VI)/Mo(V) (Rapid) is lowered relative to that in pyrophosphate, but the potential for Fe/S II is raised. The influence of buffer on the potentials was investigated by partial-reduction experiments with six other buffers. 3. Conversion of the enzyme with cyanide into the non-functional form, which gives the Slow molybdenum signal, or alkylation of FAD, has little effect on the mid-point potentials of the other centres. The potentials associated with the Slow signal are: Mo(VI)/Mo(V) (Slow), -440 +/- 25mV; Mo(V) (Slow)/Mo(IV), -480 +/- 25 mV. This signal exhibits very sluggish equilibration with the mediator system. 4. The deviations from ideal behaviour are discussed in terms of possible binding of buffer ions or anti-co-operative interactions amongst the redox centres.  相似文献   

3.
Oxidation-reduction midpoint potentials for the molybdenum center in assimilatory NADH:nitrate reductase isolated from spinach (Spinacia oleracea) have been determined at pH 7.0 in the presence of dye mediators using EPR spectroscopy to monitor formation of Mo(V). Values for the Mo(VI)/Mo(V) and Mo(V)/Mo(IV) couples were determined to be -8 and -42 mV, respectively.  相似文献   

4.
Oxidation-reduction midpoint potentials for flavin, heme, and molybdenum-pterin prosthetic groups of assimilatory nitrate reductase (NR) from Chlorella vulgaris were measured at room temperature by using CD and EPR potentiometry. The CD changes accompanying reduction of each prosthetic group were determined by using enzyme fragments containing either FAD or heme and molybdenum prosthetic groups, obtained by limited proteolysis, and by poising the enzyme at various redox potentials in the presence of dye mediators. Limited proteolysis did not appear to alter the environment of the prosthetic groups, as judged by their CD spectra. Also, CD potentiometric titration of FAD in intact NR (Em' = -272 mV, n = 2) gave a similar value (Em' = -286 mV) to the FAD of the flavin-containing proteolytic domain, determined by visible spectroscopy. Less than 1% of the flavin semiquinone was detected by EPR spectroscopy, indicating that Em' (FAD/FAD.-) may be more than 200 mV lower than Em' (FAD.-/FADH-). Reduction of heme resulted in splitting of both Soret and alpha CD bands into couplets. The heme Em' was -162 mV (n = 1) determined by both CD and visible spectroscopy. Reduction of Mo-pterin was followed by CD at 333 nm, and Mo(V) was monitored by room temperature EPR spectroscopy. Most of the change in the Mo-pterin CD spectrum was due to the Mo(VI)/Mo(V) transition. The Em' values determined for Mo(VI)/Mo(V) were +26 mV by CD and +16 mV by EPR, whereas Mo(V)/Mo(IV) values were -40 mV by CD and -26 mV by EPR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

6.
The oxidation-reduction potentials of the various prosthetic groups in the native and desulfo forms of chicken liver xanthine dehydrogenase, determined by potentiometric titration in 0.05 m potassium phosphate buffer, pH 7.8, are: Mo(VI)/Mo(V) (native), ?357 mV; Mo(VI)/Mo(V) (desulfo), ?397 mV; Mo(V)/Mo(IV) (native), ?337 mV; Mo(V)/Mo(IV) (desulfo), ?433 mV; FAD/FADH · ?345 mV; FADH · FADH2, ? 377 mV; (Fe/S)Iox/(Fe/S)Ired, ?280 mV; (Fe/S)IIox/(Fe/S)IIred, ? 275 mV. Titration at pH 6.8 revealed that the Mo and FAD centers but not the Fe/S centers are in prototropic equilibrium. Spectroscopic studies on the native and deflavinated enzymes show that environment of the flavin in xanthine dehydrogenase differs from that in bovine milk xanthine oxidase.  相似文献   

7.
Redox potentials for the various centres in the enzyme xanthine dehydrogenase (EC 1.2.1.37) from turkey liver determined by potentiometric titration in the presence of mediator dyes, with low-temperature electron-paramagnetic-resonance spectroscopy. Values at 25 degrees C in pyrophosphate buffer, pH 8.2, are: Mo(VI)/Mo(V)(Rapid),-350 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -362 +/- 20mV; Fe-S Iox./Fe-S Ired., -295 +/- 15mV; Fe-S IIox./Fe-S IIred., -292 +/- 15mV; FAD/FADH,-359+-20mV; FADH/FADH2, -366 +/- 20mV. This value of the FADH/FADH2 potential, which is 130mV lower than the corresponding one for milk xanthine oxidase [Cammack, Barber & Bray (1976) Biochem. J. 157, 469-478], accounts for many of the differences between the two enzymes. When allowance is made for some interference by desulpho enzyme, then differences in the enzymes' behaviour in titration with xanthine [Barber, Bray, Lowe & Coughlan (1976) Biochem. J. 153, 297-307] are accounted for by the potentials. Increases in the molybdenum potentials of the enzymes caused by the binding of uric acid are discussed. Though the potential of uric acid/xanthine (-440mV) is favourable for full reduction of the dehydrogenase, nevertheless, during turnover, for kinetic reasons, only FADH and very little FADH2 is produced from it. Since only FADH2 is expected to react with O2, lack of oxidase activity by the dehydrogenase is explained. Reactivity of the two enzymes with NAD+ as electron acceptor is discussed in relation to the potentials.  相似文献   

8.
Formate dehydrogenase from Methanobacterium formicicum was examined by electron paramagnetic resonance spectroscopy. Although oxidized enzyme yielded no EPR signals over the temperature range 8-200 K, dithionite reduction resulted in generation of two paramagnetic components. The first, a nearly isotropic signal visible at temperatures below 200 K with g1 = 2.018, g2 = 2.003, and g3 = 1.994, exhibited nuclear hyperfine interaction with two equivalent protons (A1 = 0.45, A2 = 0.6, and A3 = 0.55 milliTeslas). EPR spectra of partially reduced 95Mo-enriched formate dehydrogenase exhibited additional 3-4 milliTeslas splittings, due to spin interaction with the 95Mo nucleus. Thus, this signal is due to a Mo center. This is the first reported example of a Mo center with gav greater than 2.0 in a biological system. The second species, a rhombic signal visible below 40 K with g values of g1 = 2.0465, g2 = 1.9482, and g3 = 1.9111 showed no hyperfine coupling and was assigned to reduced Fe/S. Both paramagnetic species could be detected in samples of M. formicicum whole cells anaerobically reduced with sodium formate. The Mo(V) signal was altered following addition of cyanide (g1 = 1.996, g2 = 1.988, and g3 = 1.980). Growth of bacteria in the presence of 1 mM WO4(2-) resulted in abolition of the Mo(V) EPR signal and formate dehydrogenase activity. Em, 7.7 was -330 mV for Mo(VI)/Mo(V) and -470 mV for Mo(V)/Mo(IV).  相似文献   

9.
Bacterial cytoplasmic assimilatory nitrate reductases are the least well characterized of all of the subgroups of nitrate reductases. In the present study the ferredoxin-dependent nitrate reductase NarB of the cyanobacterium Synechococcus sp. PCC 7942 was analyzed by spectropotentiometry and protein film voltammetry. Metal and acid-labile sulfide analysis revealed nearest integer values of 4:4:1 (iron/sulfur/molybdenum)/molecule of NarB. Analysis of dithionite-reduced enzyme by low temperature EPR revealed at 10 K the presence of a signal that is characteristic of a [4Fe-4S](1+) cluster. EPR-monitored potentiometric titration of NarB revealed that this cluster titrated as an n = 1 Nernstian component with a midpoint redox potential (E(m)) of -190 mV. EPR spectra collected at 60 K revealed a Mo(V) signal termed "very high g" with g(av) = 2.0047 in air-oxidized enzyme that accounted for only 10-20% of the total molybdenum. This signal disappeared upon reduction with dithionite, and a new "high g" species (g(av) = 1.9897) was observed. In potentiometric titrations the high g Mo(V) signal developed over the potential range of -100 to -350 mV (E(m) Mo(6+/5+) = -150 mV), and when fully developed, it accounted for 1 mol of Mo(V)/mol of enzyme. Protein film voltammetry of NarB revealed that activity is turned on at potentials below -200 mV, where the cofactors are predominantly [4Fe-4S](1+) and Mo(5+). The data suggests that during the catalytic cycle nitrate will bind to the Mo(5+) state of NarB in which the enzyme is minimally two-electron-reduced. Comparison of the spectral properties of NarB with those of the membrane-bound and periplasmic respiratory nitrate reductases reveals that it is closely related to the periplasmic enzyme, but the potential of the molybdenum center of NarB is tuned to operate at lower potentials, consistent with the coupling of NarB to low potential ferredoxins in the cell cytoplasm.  相似文献   

10.
Potentiometric titration followed by e.p.r. measurements were used to determine the midpoint reduction potentials of the redox centres of a molybdenum-containing iron-sulphur protein previously isolated from Desulfovibrio gigas, a sulphate-reducing bacterium (Moura, Xavier, Bruschi, Le Gall, Hall & Cammack (1976) Biochem. Biophys. Res. Commun. 728 782-789; Moura, Xavier, Bruschi, Le Gall & Cabral (1977) J. Less Common Metals 54, 555-562). The iron-sulphur centres could readily be distinguished into three types by means of g values, temperature effect, oxidation-reduction potential values and reduction rates. The type-I Fe-S centres are observed at 77 K. They show mid-point potential values of -260mV (Fe-S type IA) and -440 mV (Fe-S type IB). Centres of types IA and IB appear to have similar spectra at 77 K and 24 K. The Fe-S type-II centres are only observed below 65 K and have a midpoint potential of -28mV. Long equilibration times (30 min) with dye mediators under reducing conditions were necessary to observe the very slow equilibrating molybdenum signals. The potential values associated with this signal were estimated to be approx. -415 mV for Mo(VI)/Mo(V) and-530mV for Mo(V)/Mo(IV).  相似文献   

11.
C J Kay  L P Solomonson  M J Barber 《Biochemistry》1990,29(48):10823-10828
Potentiometric titrations of assimilatory nitrate reductase from Chlorella vulgaris were performed within the pH range 6.0-9.0. Mo(V) was measured by room temperature EPR spectroscopy while the reduction state of FAD was monitored by CD spectroscopy. Between pH 6 and 8.5, the line shape of the Mo(V) EPR signal was constant, exhibiting superhyperfine coupling to a single, exchangeable proton. Potentiometric titrations indicated the Em values for the Mo(VI)/Mo(V) (+61 mV, pH 6) and Mo(V)/Mo(IV) (+35 mV, pH 6) couples decreased with increasing pH by approximately -59 mV/pH unit, consistent with the uptake of a single proton upon reduction of Mo(VI) to Mo(V) and Mo(V) to Mo(IV). The pKa values for the dissociation of these redox-coupled protons appeared to lie outside the pH range studied: pKo(MoVI), pKo(MoV) less than 5.5; pKr(MoV), pKr(MoIV) greater than 9. The Em (n = 2) for FAD (-250 mV, pH 7) varied by approximately -30 mV/pH unit within the pH range 6.0-9.0. Low-temperature EPR potentiometry at the extreme pH values indicated less than 0.5% conversion of FAD to the semiquinone form at the midpoint of the titrations. In contrast, NADH-reduced enzyme exhibited approximately 3-5% of the FAD in the semiquinone form, present as the anionic (FAD.-) species, the spectrum characterized by a line width of 1.3 mT at both pH 6.0 and 9.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Brokx SJ  Rothery RA  Zhang G  Ng DP  Weiner JH 《Biochemistry》2005,44(30):10339-10348
We report the biochemical and biophysical characterization of YedYZ, a sulfite oxidase homologue from Escherichia coli. YedY is a soluble catalytic subunit with a twin arginine leader sequence for export to the periplasm by the Tat translocation system. YedY is the only molybdoenzyme so far isolated from E. coli with the Mo-MPT form of the molybdenum cofactor. The electron paramagnetic resonance (EPR) signal of the YedY molybdenum is similar to that of known Mo-MPT containing enzymes, with the exception that only the Mo(IV) --> Mo(V) transition is observed, with a midpoint potential of 132 mV. YedZ is a membrane-intrinsic cytochrome b with six putative transmembrane helices. The single heme b of YedZ has a midpoint potential of -8 mV, determined by EPR spectroscopy of YedZ-enriched membrane preparations. YedY does not associate strongly with YedZ on the cytoplasmic membrane. However, mutation of the YedY active site Cys102 to Ser results in very efficient targeting of YedY to YedZ in the membrane, demonstrating a clear role for YedZ as the membrane anchor for YedY. Together, YedYZ comprise a well-conserved bacterial heme-molybdoenzyme found in a variety of bacteria that can be assigned to the sulfite oxidase class of enzyme.  相似文献   

13.
The titration of chicken liver sulfite oxidase (SO) with the one-electron reductant Ti(III) citrate, at pH 7.0, results in nearly quantitative selective reduction of the Mo(VI) center to Mo(V), while the b-type heme center remains in the fully oxidized Fe(III) state. The selective reduction of the Mo(VI/V) couple has been established from electronic and EPR spectra. The electronic spectrum of the Fe(III) heme center is essentially unchanged during the titration, and the continuous wave (CW)-EPR spectrum shows the appearance of the well-known Mo(V) signal due to the low pH ( lpH) form of SO. Further confirmation of the selective formation of the Mo(V)/Fe(III) form of SO is provided by the approximately 1:1 ratio of the integrated intensities of the Mo(V) and low-spin Fe(III) EPR signals after addition of one equivalent of Ti(III). The selective generation of the Mo(V)/Fe(III) form of SO is unexpected, considering that previous microcoulometry and flash photolysis investigations have indicated that the Mo(VI/V) and Fe(III/II) couples of SO have similar reduction potentials at pH 7. The nearly quantitative preparation of the one-electron reduced Mo(V)/Fe(III) form of SO by reduction with Ti(III) has enabled the interaction between these two paramagnetic metal centers, which are linked by a flexible loop with no secondary structure, to be investigated for the first time by variable-frequency pulsed electron-electron double resonance (ELDOR) spectroscopy. The ELDOR kinetics were obtained from frozen solutions at 4.2 K at several microwave frequencies by pumping on the narrow Mo(V) signal and observing the effect on the Fe(III) primary echo at both higher and lower frequencies within the microwave C-band region. The ELDOR data indicate that freezing the solution of one-electron reduced SO produces localized regions where the concentration of SO approaches that in the crystal structure, which results in the interpair interactions being the dominant dipolar interaction. However, thorough analysis of the ELDOR decay curves and simulations suggests a distribution of intramolecular Mo...Fe distances, consistent with the proposal of multiple conformations in solution for the flexible loop that connects the Mo and heme domains of SO.  相似文献   

14.
The active site of sulfite oxidase has been investigated by X-ray absorption spectroscopy at the molybdenum K-edge at 4 K. We have investigated all three accessible molybdenum oxidation states, Mo(IV), Mo(V), and Mo(VI), allowing comparison with the Mo(V) electron paramagnetic resonance data for the first time. Quantitative analysis of the extended X-ray absorption fine structure indicates that the Mo(VI) oxidation state possesses two terminal oxo (Mo = O) and approximately three thiolate-like (Mo-S-) ligands and is unaffected by changes in pH and chloride concentration. The Mo(IV) and Mo(V) oxidation states, however, each have a single oxo ligand plus one Mo-O- (or Mo-N less than) bond, most probably Mo--OH, and two to three thiolate-like ligands. Both reduced forms appear to gain a single chloride ligand under conditions of low pH and high chloride concentration.  相似文献   

15.
The halophilic archaebacterium, Halobacterium halobium has been found to contain four different b-type cytochromes. The four components were recognized by their potentiometric characteristics in situ in their functional environment in the membrane of H. halobium. Oxidation-reduction midpoint potentials of these four b-type cytochromes were determined to be +261, +160, +30, and -153 mV, respectively. We also demonstrate that the pathway involved in the transport of reducing equivalents from succinate to oxygen proceeds through the b-type cytochromes with oxidation-reduction midpoint potentials of +261 and +161 mV. The cytochrome with oxidation-reduction midpoint potential of -153 mV was not substrate reducible by NADH but was chemically reducible by dithionite. Antimycin inhibits reduction of b-type cytochrome in the succinate pathway, but has no effect on b-type cytochrome reduction when reducing equivalents are provided by NADH. The carbon monoxide difference spectrum of H. halobium membranes shows at least one carbon monoxide-binding b-type cytochrome, indicating a terminal oxidase. A scheme for electron transport in H.halobium involving the b-type cytochromes and terminal oxidase is suggested.  相似文献   

16.
A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.  相似文献   

17.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

18.
The caa3-oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS and Fourier-transform infrared (FT-IR) spectroscopic approach. In this oxidase the electron donor, cytochrome c, is covalently bound to subunit II of the cytochrome c oxidase. Oxidative electrochemical redox titrations in the visible spectral range yielded a midpoint potential of -0.01 +/- 0.01 V (vs. Ag/AgCl/3m KCl, 0.218 V vs. SHE') for the heme c. This potential differs for about 50 mV from the midpoint potential of isolated cytochrome c, indicating the possible shifts of the cytochrome c potential when bound to cytochrome c oxidase. For the signals where the hemes a and a3 contribute, three potentials, = -0.075 V +/- 0.01 V, Em2 = 0.04 V +/- 0.01 V and Em3 = 0.17 V +/- 0.02 V (0.133, 0.248 and 0.378 V vs. SHE', respectively) could be obtained. Potential titrations after addition of the inhibitor cyanide yielded a midpoint potential of -0.22 V +/- 0.01 V for heme a3-CN- and of Em2 = 0.00 V +/- 0.02 V and Em3 = 0.17 V +/- 0.02 V for heme a (-0.012 V, 0.208 V and 0.378 V vs. SHE', respectively). The three phases of the potential-dependent development of the difference signals can be attributed to the cooperativity between the hemes a, a3 and the CuB center, showing typical behavior for cytochrome c oxidases. A stronger cooperativity of CuB is discussed to reflect the modulation of the enzyme to the different key residues involved in proton pumping. We thus studied the FT-IR spectroscopic properties of this enzyme to identify alternative protonatable sites. The vibrational modes of a protonated aspartic or glutamic acid at 1714 cm-1 concomitant with the reduced form of the protein can be identified, a mode which is not present for other cytochrome c oxidases. Furthermore modes at positions characteristic for tyrosine vibrations have been identified. Electrochemically induced FT-IR difference spectra after inhibition of the sample with cyanide allows assigning the formyl signals upon characteristic shifts of the nu(C=O) modes, which reflect the high degree of similarity of heme a3 to other typical heme copper oxidases. A comparison with previously studied cytochrome c oxidases is presented and on this basis the contributions of the reorganization of the polypeptide backbone, of individual amino acids and of the hemes c, a and a3 upon electron transfer to/from the redox active centers discussed.  相似文献   

19.
The in situ oxidation—reduction potentials of plastocyanin and cytochrome f have been measured in the same preparation of spinach chloroplasts using electron paramagnetic resonance spectroscopy and dual-wavelength absorbance spectroscopy, respectively. A midpoint potential of 340 mV (n = 1.0) at pH 7.8 was found for the bound plastocyanin and a value of 385 mV (n = 1.0) was found for the bound cytochrome f.  相似文献   

20.
A single crystal of cytochrome c3 from Desulfovibrio desulfuricans Norway is studied by electron paramagnetic resonance at low temperature. The orientation of the principal axis corresponding to the largest g value is determined for the 12 heme groups in the crystal unit cell. The comparison of these directions to the normals to the heme planes, determined from the crystallographic data at 2.5 A resolution, gives strong evidence for the following assignment of the midpoint redox potentials to the heme groups H1 to H4, defined in the three-dimensional structure: -150 mV is assigned to H3, -300 mV to H4, -330 mV to H1 and -355 mV to H2. This assignment is in agreement with a partial correspondence previously established from an independent study performed on cytochrome c3 in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号