首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Changes in captopril sensitivity as a result of coronary embolization by 15 um microspheres were studied in rats. Selective coronary embolization was produced by injection of microspheres into the left ventricle during ascending aorta occlusion. The hemodynamic data were examined in conscious rats 21 days after embolization or sham operation before and after captopril bolus injection (1 mg/kg) by using microspheres method. Captopril injection caused a significant increase of the blood flow in the heart, kidneys, skin and some intestinal organs.  相似文献   

2.
The role of the Frank-Starling mechanism in the regulation of cardiac systolic function in the ischemic failing heart was examined in conscious dogs. Left ventricular (LV) dimension, pressure and systolic function were assessed using surgically implanted instrumentations and non-invasive echocardiogram. Heart failure was induced by daily intra-coronary injections of microspheres for 3-4 weeks via implanted coronary catheters. Chronic coronary embolization resulted in a progressive dilation of the left ventricle (12+/-3%), increase in LV end-diastolic pressure (118+/-19%), depression of LV dP/dt(max) (-19+/-4%), fractional shortening (-36+/-7%), and cardiac work (-60+/-9%), and development of heart failure, while the LV contractile response to dobutamine was depressed. A brief inferior vena caval occlusion in dogs with heart failure decreased LV preload to match the levels attained in their control state and caused a further reduction of LV dP/dt(max), fractional shortening, stroke work and cardiac work. Moreover, in response to acute volume loading, the change in the LV end-diastolic dimension-pressure (DeltaLVEDD-DeltaLVEDP) curve in the failing heart became steeper and shifted significantly to the left, while the increases in LV stroke work and cardiac work were blunted. Thus, our results suggest that the Frank-Starling mechanism is exhausted in heart failure and unable to further respond to increasing volume while it plays an important compensatory role in adaptation to LV dysfunction in heart failure.  相似文献   

3.
Left ventricular (LV) diastolic dysfunction is a fundamental impairment in congestive heart failure (CHF). This study examined LV diastolic function in the canine model of CHF induced by chronic coronary embolization (CCE). Dogs were implanted with coronary catheters (both left anterior descending and circumflex arteries) for CCE and instrumented for measurement of LV pressure and dimension. Heart failure was elicited by daily intracoronary injections of microspheres (1.2 million, 90- to 120-microm diameter) for 24 +/- 4 days, resulting in significant depression of cardiac systolic function. After CCE, LV maximum negative change of pressure with time (dP/dt(min)) decreased by 25 +/- 2% (P < 0.05) and LV isovolumic relaxation constant and duration increased by 19 +/- 5% and 25 +/- 6%, respectively (both P < 0.05), indicating an impairment of LV active relaxation, which was cardiac preload independent. LV passive viscoelastic properties were evaluated from the LV end-diastolic pressure (EDP)-volume (EDV) relationship (EDP = be(alpha*EDV)) during brief inferior vena caval occlusion and acute volume loading, while the chamber stiffness coefficient (alpha) increased by 62 +/- 10% (P < 0.05) and the stiffness constant (k) increased by 66 +/- 13% after CCE. The regional myocardial diastolic stiffness in LV anterior and posterior walls was increased by 70 +/- 25% and 63 +/- 24% (both P < 0.05), respectively, after CCE, associated with marked fibrosis, increase in collagen I and III, and enhancement of plasminogen activator inhibitor-1 (PAI-1) protein expression. Thus along with depressed LV systolic function there is significant impairment of LV diastolic relaxation and increase in chamber stiffness, with development of myocardial fibrosis and activation of PAI-1, in the canine model of CHF induced by CCE.  相似文献   

4.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

5.
Temporary sequential biventricular pacing (BiVP) is a promising treatment for postoperative cardiac dysfunction, but the mechanism for improvement in right ventricular (RV) dysfunction is not understood. In the present study, cardiac output (CO) was optimized by sequential BiVP in six anesthetized, open-chest pigs during control and acute RV pressure overload (RVPO). Ventricular contractility was assessed by the maximum rate of increase of ventricular pressure (dP/dt(max)). Mechanical interventricular synchrony was measured by the area of the normalized RV-left ventricular (LV) pressure diagram (A(PP)). Positive A(PP) indicates RV pressure preceding LV pressure, whereas zero indicates complete synchrony. In the control state, CO was maximized with nearly simultaneous stimulation of the RV and LV, which increased RV (P = 0.006) and LV dP/dt(max) (P = 0.002). During RVPO, CO was maximized with RV-first pacing, which increased RV dP/dt(max) (P = 0.007), but did not affect LV dP/dt(max), and decreased the left-to-right, end-diastolic pressure gradient (P = 0.023). Percent increase of RV dP/dt(max) was greater than LV dP/dt(max) (P = 0.014). There were no increases in end-diastolic pressure to account for increases in dP/dt(max). In control and RVPO, RV dP/dt(max) was linearly related to A(PP) (r = 0.779, P < 0.001). The relation of CO to A(PP) was curvilinear, with a peak in CO with positive A(PP) in the control state (P = 0.004) and with A(PP) approaching zero during RVPO (P = 0.001). These observations imply that, in our model, BiVP optimization improves CO by augmenting RV contractility. This is mediated by changes in mechanical interventricular synchrony. Afterload increases during RVPO exaggerate this effect, making CO critically dependent on simultaneous pressure generation in the RV and LV, with support of RV contractility by transmission of LV pressure across the interventricular septum.  相似文献   

6.
The purpose of our study was to investigate the role of prostaglandins in the changes in myocardial function and peripheral and coronary vascular resistance which accompany a generalized increase in sympathetic tone caused by carotid baroreflex unloading in the anesthetized dog. Bilateral carotid artery occlusion (BCO) with heart rate held constant by electrical pacing (150 beats/min) resulted in increases in systolic, (33%) diastolic (40%), and mean (35%) arterial pressures, LV systolic pressure (33%) and left ventricular (LV) dP/dt (37%). After blockade of prostaglandin synthesis with indomethacin (N = 11) or meclofenamate (N = 6) the increases in systolic (41%), diastolic (45%), and mean (41%) arterial pressures, LV systolic pressure (39%), LV dP/dt (52%), and cardiac work caused by BCO were significantly greater, in spite of the initially higher baseline values (11-18%) following the administration of the drugs. In contrast, the changes in circumflex coronary blood flow and coronary vascular resistance to BCO were essentially the same before and after inhibition of prostaglandin synthesis. Systemic prostaglandin synthesis may, therefore, play a significant role in the control of systemic arterial pressure and myocardial function, most probably by modulating the release of norepinephrine from adrenergic nerve terminals, without adversely affecting coronary blood flow regulation.  相似文献   

7.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

8.
The left anterior descending coronary artery in anaesthetized greyhounds was perfused at constant pressure with blood pumped from the carotid artery. Phasic and mean coronary flow, left ventricular pressure, dP/dt, cardiac output, ECG, heart rate and systemic pressure were measured. Leukotriene (LT) D4 was administered into the left anterior descending coronary artery as a bolus injection. LTD4 caused dose-related reductions in coronary flow. Other parameters showed little immediate change although a gradual decrease in left ventricular pressure, dP/dt, cardiac output and systemic pressure occurred after administration of LTD4. Following intracoronary administration of LTD4 small surface haemorrhages were observed over the area perfused. The reduction in coronary flow was not inhibited by indomethacin.  相似文献   

9.
This study compares the effects of perfluorochemical artificial blood versus whole blood on the systolic and diastolic function of regionally ischemic myocardial preparations. Regional ischemia was produced by ligation of the circumflex coronary artery in isolated, blood-perfused rabbit hearts. Three minutes after occlusion, half the hearts were switched from the blood perfusate to perfluorochemical artificial blood; the other half continued to be perfused with blood. Isovolumic left ventricular (LV) developed pressure, dP/dt and resting pressure were monitored before, and for 2 hours after coronary occlusion. After 90 minutes of regional ischemia, perfluorochemical-treated hearts exhibited significantly greater developed pressure than those perfused with blood (78 +/- 6% versus 61 +/- 5% of preligation values; P less than 0.05). At the end of the experiment, LV dP/dt was 21% greater in the perfluorochemical-perfused group than in the blood-perfused group (74 +/- 8% versus 53 +/- 10%; P less than 0.01). Perfluorochemical perfusion also preserved diastolic function by preventing the 58% increase in left ventricular chamber stiffness (i.e., resting pressure; P less than 0.01) associated with circumflex ligation. Thus, in the present model of regional ischemia, perfluorochemical artificial blood is significantly better than blood at maintaining both systolic and diastolic myocardial function after a major coronary artery has been occluded.  相似文献   

10.
Positive responses to left (LV) and biventricular (BV) stimulation observed in heart failure patients with left bundle branch block (LBBB) suggest a possible mechanism of LV resynchronization. An anesthetized canine LBBB model was developed using radio frequency ablation. Before and after ablation, LV pressure derivative over time (dP/dt) and aortic pulse pressure (PP) were assessed during normal sinus rhythm with right ventricle (RV), LV, or BV stimulation combined with four atrioventricular delays in six dogs. In three more dogs, M-mode echocardiograms of septal and LV posterior wall motion were obtained before and after LBBB and during LV stimulation. LBBB caused QRS widening and hemodynamics deterioration. Before ablation, stimulation alone worsened LV dP/dt and PP. After ablation, LV and BV stimulation maximally increased LV dP/dt by 16% and PP by 7% (P < 0.001), whereas little improvement was observed during RV stimulation. M-mode echocardiogram showed that LBBB resulted in a paradoxical septal wall motion that was corrected by LV stimulation. In conclusion, LV and BV stimulation improved cardiac function in a canine LBBB model via resynchronization of LV excitation and contraction.  相似文献   

11.
To investigate the effects of colchicine on left ventricular (LV) function and hypertrophy (LVH) of rats subjected to constriction of transverse aorta (TAoC), we evaluated SO (sham operated, vehicle; n = 25), SO-T (sham operated, colchicine 0.4 mg/kg body wt ip daily; n = 38), TAoC (vehicle; n = 37), and TAoC-T (TAoC, colchicine; n = 34) on the 2nd, 6th, and 15th day after surgery. Colchicine attenuated LVH of TAoC-T compared with TAoC rats, as evaluated by ratio between LV mass (LV(M)) and right ventricular mass, LV wall thickness, and average diameter of cardiac myocytes. Systolic gradient across TAoC ( approximately 45 mmHg), LV systolic pressure, LV end-diastolic pressure, and rate of LV pressure increase (+dP/dt) were comparable in TAoC-T and TAoC rats. However, the baseline and increases of LV systolic pressure-to-LV(M) and +dP/dt-to-LV(M) ratios induced by phenylephrine infusion were greater in TAoC-T and SO-T compared with SO rats. Baseline and increases of +dP/dt-to-LV(M) ratio were reduced in TAoC compared with SO rats. TAoC rats increased polymerized fraction of tubulin compared with SO, SO-T, and TAoC-T rats. Our results indicate that colchicine treatment reduced LVH to pressure overload but preserved LV function.  相似文献   

12.
The effects of beta-adrenergic blockade upon myocardial blood flow and oxygen balance during exercise were evaluated in eight conscious dogs, instrumented for chronic measurements of coronary blood flow, left ventricular pressure, aortic blood pressure, heart rate, and sampling of arterial and coronary sinus venous blood. The administration of propranolol (1.5 mg/kg iv) produced a decrease in heart rate, peak left ventricular (LV) dP/dt, LV (dP/dt/P, and an increase in LV end-diastolic pressure during exercise. Mean coronary blood flow and myocardial oxygen consumption were lower after propranolol than at the same exercise intensity in control conditions. The oxygen delivery-to-oxygen consumption ratio and the coronary sinus oxygen content were also significantly lower. It is concluded that the relationship between myocardial oxygen supply and demand is modified during exercise after propranolol, so that a given level of myocardial oxygen consumption is achieved with a proportionally lower myocardial blood flow and a higher oxygen extraction.  相似文献   

13.
Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson''s trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis.  相似文献   

14.
The contractile function of the isolated rat heart and high energy phosphate content were evaluated under conditions of depressed energy supply caused by disturbances either in mitochondrial ATP production or ATP-phosphocreatine transformation. Amytal (0.3 mM), an inhibitor of mitochondrial respiration, or iodoacetamide (IAA, 0.1 mM) reducing in this dose creatine kinase activity to 19% of the initial level, were used, respectively. Myocardial ATP content remained unaffected in both groups and PCr content decreased to 37% only in amytal-treated group. Very similar alterations in cardiac pump function during volume load were observed in both treated groups; maximal cardiac output was significantly less by 30%, cardiac pressure-volume work by 38–40%, left ventricular (LV) systolic pressure by 24–29%, and LV +dP/dt by 36–39%. In contrast, the extent of decreased LV distensibility was different, a curve relating LV filling volume and end-diastolic pressure was shifted up and to the left much more prominently after IAA treatment. Heart rate was decreased by 24% only in amytal-treated group. Results indicate that a decreased myocardial distensibility is a dominating feature in the acute cardiac pump failure caused by an inhibition of myocardial creatine kinase. Isoproterenol (0.1 M) substantially increased heart rate and pressure-rate product in IAA-treated hearts but failed to increase cardiac work probably due to its inability to improve myocardial distensibility.  相似文献   

15.
In vitro and in situ studies have proposed a potentiation of submaximal force production after myosin light chain 2 (P-light chain) phosphorylation in mammalian striated muscle. The purpose of this study was to ascertain the relationship between the augmentation in left ventricular pressure development and cardiac myosin P-light chain phosphorylation at different times during and after submaximal treadmill exercise involving adult female Sprague-Dawley rats. In vivo hemodynamic measurements were monitored with an indwelling high-fidelity solid-state pressure transducer. Exercise heart rate, peak left ventricular (LV) pressure, and rate of LV pressure development/relaxation (LV +/- dP/dt) were significantly elevated compared with a normal sedentary group (P less than 0.001). Peak LV pressure remained significantly elevated throughout 20 min of postexercise recovery (P less than 0.01), and heart rate, LV end-diastolic pressure, and LV +/- dP/dt returned rapidly to preexercise values. Corresponding to these in vivo hemodynamic changes, increased levels of P-light chain phosphorylation were observed during both exercise (16%, P less than 0.01) and subsequent recovery periods (14%, P less than 0.02) compared with the NC group. A quasi-temporal relationship was observed between postexercise peak LV pressure potentiation and P-light chain phosphorylation. These results demonstrate that cardiac myosin P-light chain phosphorylation is associated, in part, with the augmentation of peak LV pressure observed during both exercise and recovery.  相似文献   

16.
To evaluate, in the absence of lung inflation, the cardiovascular effects of single and repetitive pleural pressure increments induced by thoracic vest inflations and timed to occur during specific portions of the cardiac cycle, seven chronically instrumented dogs were studied. Reflexes and left ventricular (LV) performance were varied by autonomic blockade, circumflex coronary occlusion (with and without beta-blockade), or cardiac arrest. Single late systolic, but not early systolic, vest inflations significantly increased LV stroke volume both before (+12.4%) and after myocardial depression by coronary occlusion+beta-blockade (+18.5%) when performed after a period of apnea to control preload and rate. During vest inflations, LV and aortic pressures increased to a greater degree than esophageal pressure (by 51 vs. 39 mmHg, P = 0.0001). Lung inflations (26 trials in 3 dogs) during early or late systole failed to increase stroke volume, despite peak esophageal pressures of 11-26 mmHg. With autonomic reflexes intact, repetitive vest inflations coupled to early systole, late systole, or diastole induced a large (40%) but unspecific systemic flow increase. In contrast, during autonomic blockade, flow increased slightly (7.5%, P < 0.05) with late systolic compared with diastolic inflations but not relative to baseline. During coronary occlusion (with or without beta-blockade), no cycle-specific differences were seen, whereas matched vest inflations during cardiac arrest generated 20-30% of normal systemic flow. Thus only single late systolic thoracic vest inflations associated with large increments in pleural pressure increased LV emptying, presumably by decreasing LV afterload and/or focal cardiac compression. However, during myocardial ischemia and depression, coupling of vest inflation to specific parts of the cardiac cycle revealed no hemodynamic improvement, suggesting that benefits of this circulatory assist method, if any, are minor and may be restricted to conditions of cardiac arrest.  相似文献   

17.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

18.
Li HX  Han SY  Ma X  Zhang K  Wang L  Ma ZZ  Tu PF 《Phytomedicine》2012,19(6):477-483
Steamed root of Panax ginseng C.A. Mayer, known as "red ginseng", differs from other ginseng preparations in terms of its saponin components and content, as some partly deglycosylated saponins are produced as artifacts during the steaming process. However, whether saponins derived from red ginseng (SRG) can have a protective effect on cardiomyocytes remains unknown. The present study aimed to explore the effect of SRG on myocardial ischemia in vitro and in vivo. MTT assays revealed that SRG pretreatment significantly increased the viability of cardiomyocytes injured by Na(2)S(2)O(4) hypoxia in vitro. This effect was almost completely abolished by glibenclamide, a blocker of the ATP-sensitive potassium channel, but the cardioprotective activity of SRG was not influenced by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SRG also significantly reduced the Na(2)S(2)O(4)-induced increase in intracellular calcium, as shown by Fluo-3/AM probes with flow cytometry. Adult rat heart ischemia, which was induced by ligation of the left anterior descending coronary artery, was employed for the in vivo analysis. SRG pretreatment reduced infarct size and resulted in a higher left ventricle (LV) developed pressure, LV (+)dP/dt(max) and LV systolic pressure and lower LV (-)dP/dt(max) and LV end diastolic pressure after 24h of ischemia. Moreover, SRG significantly reduced the level of cardiac Troponin I (cTnI) in the serum, which suggests that cTnI, a protein component of the troponin regulatory complex involved in cardiac contractility, contributes to the SRG-mediated recovery of cardiac systolic function. In conclusion, this study is the first to provide evidence and a mechanistic analysis of the cardioprotective effects of SRG. SRG significantly attenuated myocardial ischemic injury by improving cardiac systole function, partly by reducing cTnI secretion and improving cardiac diastolic function. Also, SRG attenuated the Ca(2+) overload in cardiomyocytes and modulated the K(ATP), but not PI3K, signaling pathway; taken together, these mechanisms synergistically reduced infarct size.  相似文献   

19.
Coronary collaterals preserve left ventricular (LV) function during coronary occlusion by reducing myocardial ischemia and may directly influence LV compliance. We aimed to re-evaluate the relationship between coronary collaterals, measured quantitatively with a pressure wire, and simultaneously recorded LV contractility from conductance catheter data during percutaneous coronary intervention (PCI) in humans. Twenty-five patients with normal LV function awaiting PCI were recruited. Pressure-derived collateral flow index (CFI(p)): CFI(p) = (P(w) - P(v))/(P(a) - P(v)) was calculated from pressure distal to coronary balloon occlusion (P(w)), central venous pressure (P(v)), and aortic pressure (P(a)). CFI(p) was compared with the changes in simultaneously recorded LV end-diastolic pressure (ΔLVEDP), end-diastolic volume, maximum rate of rise in pressure (ΔLVdP/dt(max); systolic function), and time constant of isovolumic relaxation (ΔLV τ; diastolic function), measured by a LV cavity conductance catheter. Measurements were recorded at baseline and following a 1-min coronary occlusion and were duplicated after a 30-min recovery period. There was significant LV diastolic dysfunction following coronary occlusion (ΔLVEDP: +24.5%, P < 0.0001; and ΔLV τ: +20.0%, P < 0.0001), which inversely correlated with CFI(p) (ΔLVEDP vs. CFI(p): r = -0.54, P < 0.0001; ΔLV τ vs. CFI(p): r = -0.46, P = 0.0009). Subjects with fewer collaterals had lower LVEDP at baseline (r = 0.33, P = 0.02). CFI(p) was inversely related to the coronary stenosis pressure gradient at rest (r = -0.31, P = 0.03). Collaterals exert a direct hemodynamic effect on the ventricle and attenuate ischemic LV diastolic dysfunction during coronary occlusion. Vessels with lesions of greater hemodynamic significance have better collateral supply.  相似文献   

20.
Effects of yohimbine (YHMB, an alpha 2-antagonist) and desipramine (DMI, a neuronal uptake inhibitor) were compared on cardiac noradrenaline (NA) release either upon left ansa subclavia nerve stimulation during acute occlusion of the left anterior descending coronary artery (LAD) or upon subsequent LAD reperfusion without stimulation in anesthetized dogs. In control dogs, before LAD occlusion, coronary sinus (CS) NA output increased from 5.4 +/- 1.0 to 26.8 +/- 4.0 ng/min (p less than 0.05) upon stimulation (2 Hz, 30 s). The response to stimulation remained unchanged 25 min after LAD occlusion. During reperfusion 60 min after occlusion, the output of CS-NA and lactate increased from 6.1 +/- 0.8 to 51.3 +/- 19.4 ng/min (p less than 0.05) and from 2.7 +/- 0.5 to 6.7 +/- 1.3 mg/min (p less than 0.05), respectively. In dogs treated with YHMB, the stimulation-induced increase in NA output was potentiated at least fourfold (p less than 0.05) either before or during LAD occlusion, but not during reperfusion. In dogs receiving DMI, stimulation-induced CS-NA output was enhanced to a similar extent (approximately twofold, p less than 0.05) either before or during occlusion, while reperfusion-induced NA output was markedly potentiated by approximately ninefold (p less than 0.05). Maximum dP/dt of left ventricular pressure remained unchanged upon reperfusion in all groups. The total arrhythmic ratio in the drug-treated groups did not significantly differ from the ratio in control dogs upon either stimulation or reperfusion. The data suggest that an abrupt increase in NA output upon reperfusion may result from a washout of NA locally accumulated in the ischemic and (or) peri-ischemic region during the preceding occlusion period, and that NA thus released does not have substantial hemodynamic effects. The results indicate that in the presence of YHMB or DMI, the potentiated increase in NA release in response to either nerve stimulation during LAD occlusion or to reperfusion without stimulation did not aggravate ventricular arrhythmia, most probably owing to the antiarrhythmic properties of these substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号