首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis   总被引:5,自引:0,他引:5  
Production of ethanol by bioconversion of lignocellulosic biomass has attracted much interest in recent years. However, the pretreatment process for increasing the enzymatic digestibility of cellulose has become a key step in commercialized production of cellulosic ethanol. During the last decades, many pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. From the point of view for integrated utilization of lignocellulosic biomass, organosolv pretreatment provides a pathway for biorefining of biomass. This review presents the progress of organosolv pretreatment of lignocellulosic biomass in recent decades, especially on alcohol, organic acid, organic peracid and acetone pretreatments, and corresponding action mechanisms. Evaluation and prospect of organosolv pretreatment were performed. Finally, some recommendations for future investigation of this pretreatment method were given.  相似文献   

2.
为了提高沙柳生物转化过程的经济可行性,考察了沙柳原料经过蒸爆、超微粉碎+稀酸、超微粉碎+稀碱预处理后高浓度底物补料酶解的效果,并对其高浓度水解糖液进行了乙醇发酵。结果表明:蒸爆处理法水解效果最好,通过补料酶解,底物质量分数可以达到30%,酶解液中总糖质量浓度达到132 g/L,葡萄糖质量浓度105 g/L;超微粉碎+稀酸预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度达到123 g/L,葡萄糖质量浓度73 g/L;超微粉碎+稀碱预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度133 g/L,葡萄糖质量浓度77 g/L。3种预处理使沙柳原料的酶解糖液都可以较好地被酿酒酵母利用发酵产乙醇,蒸爆处理原料的酶解糖液乙醇发酵效果最好,乙醇质量浓度达到47 g/L。  相似文献   

3.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

4.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

5.
Schizophyllum commune is a basidiomycete equipped with an efficient cellulolytic enzyme system capable of growth on decaying woods. In this study, production of lignocellulose-degrading enzymes from S. commune mutant G-135 (SC-Cel) on various cellulosic substrates was examined. The highest cellulase activities including CMCase, FPase, and β-glucosidase were obtained on Avicel-PH101 while a wider range of enzymes attacking non-cellulosic polysaccharides and lignin were found when grown on alkaline-pretreated biomass. Proteomic analysis of SC-Cel also revealed a complex enzyme system comprising seven glycosyl hydrolase families with an accessory carbohydrate esterase, polysaccharide lyase, and auxiliary redox enzymes. SC-Cel obtained on Avicel-PH101 effectively hydrolyzed all agricultural residues with the maximum glucan conversion of 98.0% using corn cobs with an enzyme dosage of 5 FPU/g-biomass. The work showed potential of SC-Cel on hydrolysis of various herbaceous biomass with enhanced efficiency by addition external β-xylosidase.  相似文献   

6.
Semicontinuous enzymatic hydrolysis of lignocelluloses   总被引:3,自引:0,他引:3  
Lignocelluloses (steamed hardwood and hardwood kraft pulp) were semicontinuously hydrolyzed on a large scale [2-2. 5 kg of substrate vs. 20, 000 IU filter paperase (FPase)] using a 10-L hydrolysis reactor with an ultrafiltration unit for the recovery and reuse of cellulases. The substrate was added to the reactor at appropriate intervals to keep a concentration of approximately 5% (w/v). All of the enzyme was added at the beginning and no further addition was done. The ultrafiltration unit was operated intermittently rather than continuously due to its enough capacity (dilution rate of 2.5 h(-1)) and making the enzyme durable. The enzyme required to produce one gram of reducing sugar in this reactor was 27.3 FPase IU/g RS for steamed hardwood and 7.4 FPase IU/g RS for hardwood kraft pulp. The sugar composition of hydrolyzate was unaltered virtually from beginning to end of the hydrolysis in spite of the progressive loss of enzyme activities. The analysis of the enzyme composition in the hydrolyzate during hydrolysis revealed that an exo-beta-D-glucanase component was adsorbed selectively at the stages of advanced hydrolysis extent.  相似文献   

7.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

8.
This study aims to evaluate the activity of the cellulase enzyme forward the use of ultrasound technology in different conditions of temperature, pH and exposure time, as well, to match the steps of pretreatment and enzymatic hydrolysis in one step. A central composite design (CCRD) and response surface analysis were used to evaluate the effect of ultrasound power, temperature and pH on enzyme activity. Optimum condition in the studied range was 30% for ultrasound power, pH 4.6 and 50?°C, yielding an enzyme activity of 15.5 UPF/mL. From this, we carried out kinetics of enzymatic hydrolysis on filter paper and bagasse malt, in optimized conditions. Total reducing sugars (TRS) were 3.85 and 0.46?mg/mL when the filter paper and bagasse malt were used as substrate, respectively. Ultrasound showed to be a good technology to increase the enzyme activity aiming to intensify enzymatic processes.  相似文献   

9.
The effect of particle size on enzymatic hydrolysis of cellulose has been investigated. The average size of microcrystalline cotton cellulose has been reduced to submicron scale by using a media mill. The milled products were further subjected to hydrolysis using cellulase. High cellulose concentration (7%) appeared to retard the size reduction and resulted in greater particles and smaller specific surface areas than those at low concentration (3%) with the same milling time. Initial rate method was employed to explore the rate of enzymatic hydrolysis of cellulose. The production rate of cellobiose was increased at least 5-folds due to the size reduction. The yield of glucose was also significantly increased depending upon the ratio of enzyme to substrate. A high glucose yield (60%) was obtained in 10-h hydrolysis when the average particle size was in submicron scale.  相似文献   

10.
比较了自产纤维素酶和商品纤维素酶的水解效果,并采用超滤、层析、SDS-PAGE相结合的方法分析2种纤维素酶蛋白组分的差异。里氏木霉以纸浆为C源合成的自产纤维素酶的水解得率高于商品纤维素酶,自产纤维素酶水解48h的得率为66.24%,商品纤维素酶的得率为52.19%。自产纤维素酶中存在着Cel6A酶组分和XYNⅡ酶组分,而商品纤维素酶中没有检测到这2种酶组分。自产纤维素酶和商品纤维素酶的Cel1A酶组分和Cel7A酶组分间存在着分布和含量上的差异。自产纤维素酶在相对分子质量(2.5~3.5)×104范围内存在着几条蛋白条带,而商品纤维素酶则是在相对分子质量3.5×104附近存在着几条蛋白条带。  相似文献   

11.
Cellulose resource has got much attention as a promising replacement of fossil fuel. The hydrolysis of cellulose is the key step to chemical product and liquid transportation fuel. In this paper a serials of chloride, acetate, and formate based ionic liquids were used as solvents to dissolve cellulose. The cellulose regenerated from ILs was characterized by FTIR and X-ray powder diffraction. From the characterization and analysis, it was found that the original close and compact structure has changed a lot. After enzymatic hydrolysis, different kinds of ionic liquids (ILs) have different yields of the reducing sugar (TRS). They are 100%, 90.72%, and 88.92% from 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), 1-butyl-3-methylimidazolium formate ([BMIM][HCOO]) respectively after enzymatic hydrolysis at 50 °C for 5 h. The results indicated that the yields and the hydrolysis rates were improved apparently after ILs pretreatment comparing with the untreated substrates.  相似文献   

12.
Autohydrolysed beech sawdust has been treated with aqueous NaOH solution in a three-stage process to increase the susceptibility of cellulose to cellulolytic enzymes. This process consisted of neutralization of autohydrolysed wood, extraction of lignin and alkali treatment of residual solids with 1.5% aqueous NaOH solution at 135°C for 1 h. The cellulose in the residues was then hydrolysed with Novo (SP 122) and Fusarium sp. 27 cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4]. The susceptibility of cellulose to cellulases was increased 2.3 to 2.7-fold.  相似文献   

13.
The hydrolysis kinetics of steam-exploded wheat straw treated with cellulase NS 50013 enzyme complex in combination with β-glucosidase NS 50010 is studied. The time dependence of the reducing sugars amount is followed at varying the temperature value and the amount of the enzyme introduced. The activation energy determined on the ground of the rate temperature dependence stays unchanged in the course of the process. The preexponential factor decreases with the increase of the degree of hydrolysis and is responsible for the process rate decrease. A new expression for the dependence of degree of hydrolysis of one of carbohydrate polymers (cellulose) in wheat straw on the time, the enzyme concentration and the temperature is obtained. It is of practical importance as well because it provides estimation of the degree of hydrolysis required at predetermined values of the temperature, the enzyme concentration and the time used. The expression can be used for control of the enzyme hydrolysis of cellulose in the wheat straw.  相似文献   

14.
Sun F  Chen H 《Bioresource technology》2008,99(13):5474-5479
In order to defray the cost of biodiesel production, the ensuing work was to further investigate utilization of the crude glycerol (CG) from oleochemicals industry in the atmospheric autocatalytic organosolv pretreatment (AAOP) to enhance enzymatic hydrolysis.

The AAOP–CG enabled wheat straw to achieve with reasonable enzymatic hydrolysis yields, reaching 75% for the wet substrate and 63% for the dried. Lipophilic compounds from the CG formed pitch deposition on the fiber, which was responsible for low delignification (30%) and also troublesome in practical operation. Pitch deposits itself had no significant role on enzymatic hydrolysis. A striking finding of the lignin recondensation and/or lignin–carbohydrate complex helped explain why dried pretreated wheat straw had a low enzymatic hydrolysis yield. The CG was suitable for the AAOP to enhance enzymatic hydrolysis of lignocellulosic biomass. But it was advisable to remove lipophilic compounds from crude glycerol before utilization.  相似文献   


15.
Enzymatic hydrolysis of pretreated lignocellulosic substrates has emerged as an interesting option to produce sugars that can be converted to liquid biofuels and other commodities using microbial biocatalysts. Lignocellulosic substrates are pretreated to make them more accessible to cellulolytic enzymes, but the pretreatment liquid partially inhibits subsequent enzymatic hydrolysis. The presence of pretreatment liquid from Norway spruce resulted in a 63% decrease in the enzymatic saccharification of Avicel compared to when the reaction was performed in a buffered aqueous solution. The addition of 15 mM of a reducing agent (hydrogen sulfite, dithionite, or dithiothreitol) to reaction mixtures with the pretreatment liquid resulted in up to 54% improvement of the saccharification efficiency. When the reducing agents were added to reaction mixtures without pretreatment liquid, there was a 13-39% decrease in saccharification efficiency. In the presence of pretreatment liquid, the addition of 15 mM dithionite to Avicel, α-cellulose or filter cake of pretreated spruce wood resulted in improvements between 25 and 33%. Positive effects (6-17%) of reducing agents were also observed in experiments with carboxymethyl cellulose and 2-hydroxyethyl cellulose. The approach to add reducing agents appears useful for facilitating the utilization of enzymes to convert cellulosic substrates in industrial processes.  相似文献   

16.
Extraction of high-value products from agricultural wastes is an important component for sustainable bioeconomy development. In this study, wax extraction from sugarcane bagasse was performed and the beneficial effect of dewaxing pretreatment on the enzymatic hydrolysis was investigated. About 1.2% (w/w) of crude sugarcane wax was obtained from the sugarcane bagasse using the mixture of petroleum ether and ethanol (mass ratio of 1:1) as the extraction agent. Results of Fourier-transform infrared characterization and gas chromatography–mass spectrometry qualitative analysis showed that the crude sugarcane wax consisted of fatty fractions (fatty acids, fatty aldehydes, hydrocarbons, and esters) and small amount of lignin derivatives. In addition, the effect of dewaxing pretreatment on the enzymatic hydrolysis of sugarcane bagasse was also investigated. The digestibilities of cellulose and xylan in dewaxed sugarcane bagasse were 18.7 and 10.3%, respectively, compared with those of 13.1 and 8.9% obtained from native sugarcane bagasse. The dewaxed sugarcane bagasse became more accessible to enzyme due to the disruption of the outermost layer of the waxy materials.  相似文献   

17.
木质纤维素原料酶水解产乙醇工艺的研究进展   总被引:1,自引:1,他引:1  
木质纤维素原料预处理后,经水解、发酵等过程,可生产乙醇作为清洁燃料,这大大提高了农业和林业废弃物的利用率,减轻了环境污染,并为经济的可持续发展提供了保证。目前木质纤维素酶水解因其具有明显优势而受到重视,被普遍研究和采用。综述了近年来木质纤维素原料的预处理方法、酶与水解技术、发酵工艺以及发酵耦合分离技术的最新研究成果。  相似文献   

18.
An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme “infection” process and the catalysis of cellulose into a two‐parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1021–1028, 2014  相似文献   

19.
The effect of delignification of forest biomass on enzymatic hydrolysis   总被引:1,自引:0,他引:1  
Yu Z  Jameel H  Chang HM  Park S 《Bioresource technology》2011,102(19):9083-9089
The effect of delignification methods on enzymatic hydrolysis of forest biomass was investigated using softwood and hardwood that were pretreated at an alkaline condition followed by sodium chlorite or ozone delignification. Both delignifications improved enzymatic hydrolysis especially for softwood, while pretreatment alone was found effective for hardwood. High enzymatic conversion was achieved by sodium chlorite delignification when the lignin content was reduced to 15%, which is corresponding to 0.30-0.35 g/g accessible pore volume, and further delignification showed a marginal effect. Sample crystallinity index increased with lignin removal, but it did not show a correlation with the overall carbohydrate conversion of enzymatic hydrolysis.  相似文献   

20.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号