首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The operation of packed bed fermenters for ethanol production using the EX-FERM technique with two cycles of 24 h each is described. Twelve Saccharomyces strains were tested with sugarcane particles which had been previously dried and stored as the substrate. All the strains showed acceptable sugar consumption, in some cases above 97%, and ethanol yield coefficients. Sugar consumption values differed, significantly among yeast strains for both cycles. Specific initial rates of ethanol production for the strains ranged from 0.75 to 0.82 g/g· h. Sugar extraction from the particles influenced the first 4 h period of each cycle; final sugar extraction was about 96%. The initial yeast biomass figures were low, within 2–4 g/l, and the final distribution of yeast between solids and circulating liquid varied according to the yeast strain employed. Hydrolysis of sucrose into its components was demonstrated for selected yeast strains during the EX-FERM concurrent extraction and fermentation. The results of the present study support the validity of the operation of packed bed fermenters in cycles for the EX-FERM technique, and suggest employment of smaller cane particles.  相似文献   

2.
Two mutants of Clostridium thermocellum were isolated after UV light mutagenesis. Mutant A1, selected as asporogenous, exhibited a fermentation pattern similar to that of the wild type. However, at pH 6.5, the mutant degraded 12% more cellulose than did the wild type, leading to enhanced ethanol production. Mutant 647, selected as ethanol tolerant, was able to grow in medium containing 4% ethanol. During the early stage of the exponential growth phase, ethanol was produced as the main product, up to a concentration of about 9 g/liter. After 3 days of culture, 48.3 g (89% of the initial amount) of degraded cellulose per liter was fermented into 12.7 g of ethanol per liter.  相似文献   

3.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

4.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

5.
For direct and efficient ethanol production from cellulosic materials, we constructed a novel cellulose-degrading yeast strain by genetically codisplaying two cellulolytic enzymes on the cell surface of Saccharomyces cerevisiae. By using a cell surface engineering system based on α-agglutinin, endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414 was displayed on the cell surface as a fusion protein containing an RGSHis6 (Arg-Gly-Ser-His6) peptide tag in the N-terminal region. EGII activity was detected in the cell pellet fraction but not in the culture supernatant. Localization of the RGSHis6-EGII-α-agglutinin fusion protein on the cell surface was confirmed by immunofluorescence microscopy. The yeast strain displaying EGII showed significantly elevated hydrolytic activity toward barley β-glucan, a linear polysaccharide composed of an average of 1,200 glucose residues. In a further step, EGII and β-glucosidase 1 from Aspergillus aculeatus No. F-50 were codisplayed on the cell surface. The resulting yeast cells could grow in synthetic medium containing β-glucan as the sole carbon source and could directly ferment 45 g of β-glucan per liter to produce 16.5 g of ethanol per liter within about 50 h. The yield in terms of grams of ethanol produced per gram of carbohydrate utilized was 0.48 g/g, which corresponds to 93.3% of the theoretical yield. This result indicates that efficient simultaneous saccharification and fermentation of cellulose to ethanol are carried out by a recombinant yeast cells displaying cellulolytic enzymes.  相似文献   

6.
Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale.  相似文献   

7.
Summary Very high gravity wheat mashes containing 300 g or more sugares per liter were prepared by enzymatic hydrolysis of starch and fermented with a commercial preparation of active dry yeast. The active dry yeast used in this study was a blend of several strains ofSaccharomyces cerevisiae. The fermentation was carried out at 20°C at different pitching rates (inoculation levels) with and without the addition of yeast extract as nutrient supplement. At a pitching rate of 76 million cells per g of mash an ethanol yield of 20.4% (v/v) was obtained. To achieve this yeast extract must be added to the wheat mash as nutrient supplement. When the pitching rate was raised to 750 million cells per g of mash, the ethanol yield increased to 21.5% (v/v) and no nutrient supplement was required. The efficiency of conversion of sugar to ethanol was 97.6% at the highest pitching rate. This declined slightly with decreasing pitching rate. A high proportion of yeast cells lost viability at high pitching rates. It is suggested that nutrients released from yeast cells that lost viability and lysed, contributed to the high yield of ethanol in the absence of any added nutrients.  相似文献   

8.
The thermotolerant ethanol producing Kluyveromyces marxianus IMB3 yeast was used in eight 60m3 fermenters for industrial ethanol production in India using sugarcane molasses. Ethanol ranged between 6.0–7.2% (w/v) with added advantages of elimination of cooling during fermentation and shorter fermentation periods of 20h. © Rapid Science Ltd. 1998  相似文献   

9.
Summary Yeast cells were immobilized by adhesion to cotton cloth using polyethylenimine. Yeast cells could be adhered to cotton cloth by coating either the yeast cells or cotton cloth or both with polyethylenimine. Adhered cells were not desorbed by washing with 1 M KCl or 50% (v/v) ethylene glycol or 0.1 M buffers pH 3.6–8.0. Also presence of salt (1 M) in the cell suspension was not found to alter the binding capacity of the cells. The yeast cell bound cloth was used in a specially designed frame reactor (2.3 L) for the repeated inversion of sucrose in 16 batches over a period of 3 weeks still retaining about 80% of the original invertase activity.  相似文献   

10.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in control S. cerevisiae wines, whereas the total concentrations of esters were not significantly different.  相似文献   

12.
The effect of flow rates and a specific ethanol load on the growth of Candida utilis and Candida krusei was studied in the process of one-step and three-step cultivation. The productive capacity of fermenters and the economic coefficient of yeast biomass production were shown to depend on the ability of microbial populations to assimilate a certain quantity of a carbon substrate per unit time. When a specific ethanol load exceeds the optimal one, the respiratory activity of a population and the economic coefficient of growth fall down whereas the accumulation of metabolites in the cultural broth increases. The steady state of biomass can be maintained in the process of continuous cultivation by inhibiting the yeast growth with an excess of ethanol.  相似文献   

13.
Escherichia coli FBR5 containing recombinant genes for ethanol production on plasmids that are also required for anaerobic growth was cultivated continuously on 50 g/l xylose or glucose in the absence of antibiotics and without the use of special measures to limit the entry of oxygen into the fermenter. Under chemostat conditions, stable ethanol yields of ca. 80–85% of the theoretical were obtained on both sugars over 26 days at dilution rates of 0.045/h (xylose) and 0.075/h (glucose), with average plasmid retention rates of 96% (xylose) and 97% (glucose). In a continuous fluidized bed fermenter, with the cells immobilized on porous glass beads, the extent of plasmid retention by the free cells fell rapidly, while that of the immobilized cells remained constant. This was shown to be due to diffusion of oxygen through the tubing used to recirculate the medium and free cells. A change to oxygen-impermeable tubing led to a stable high rate of plasmid retention (more than 96% of both the free and immobilized cells) with ethanol yields of ca. 80% on a 50 g/l xylose feed. The maximum permissible level of oxygen availability consistent with high plasmid retention by the strain appears to be of the order of 0.1 mmol per hour per gram dry biomass, based on measurements of the rate of oxygen penetration into the fermenters. Revertant colonies lacking the ethanologenic plasmid were easily detectable by their morphology which correlated well with their lack of ampicillin resistance upon transfer plating.  相似文献   

14.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   

15.
Summary The object of this study was to establish the possibility of using the yeast biomass separated from the fermentation broth at the end of ethanol fermentation of juniper berry sugars as an inoculum in successive batch fermentation processes. A part of the fermentation broth (10% v/v) and a suspension of yeast biomass (separated from the same broth) into the water extract of juniper berries (2 g of wet yeast biomass per liter of water extract) were used as inocula. It was shown that the suspension of yeast biomass could be used as inoculum in successive batch processes without negative effects on the kinetics and ethanol yield, but with positive effects on the capacity and economy of the bioprocess. The addition of ammonium salts at optimum levels did not affect the final ethanol concentrations (4.3–4.4% v/v), but enhanced the specific rate of ethanol production, thus reducing the process duration by about five times.  相似文献   

16.
A mutant of Clostridium thermocellum isolated after UV mutagenesis and selection for resistance to fluoropyruvate was found to be asporogenous and ethanol tolerant. The mutant was also an ethanol hyperproducer, able to ferment 63 g of cellulose into 14.5 g of ethanol per liter of medium. The ratio of ethanol to total organic acids produced by the mutant was increased, and H2 production was decreased. Culture conditions were optimized for ethanol production by the new strain.  相似文献   

17.
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on α-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and β-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.  相似文献   

18.
Summary Saccharomyces cerevisiae cells were immobilized on cotton cloth. The resulting yeast films were placed in parallel in a rectangular fermentor which was designed for scale-up. Ethanol production from sugars in the hydrolysate of Jerusalem artichoke tubers was studied in three modes of operation: batch, circulated batch and continuous flow. Circulated batch fermentation gave the shortest time of fermentation and accordingly the highest average ethanol productivity.  相似文献   

19.
The productivity of immobilized yeast cell reactors varies with a number of parameters, including flow, amount and growth rate of yeast, bead size and type of medium. Variation of these parameters has a pronounced effect on reaction rate. This paper presents typical ranges for these productivities and demonstrates the patterns of changes that take place when bead size, flow and reaction medium are varied. Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for the production of ethanol. The productivity of immobilized yeast in a batch reactor (0.2 g ethanol/g yeast · h) was only two-thirds that of free cells suspended at an equivalent cell density (0.3 g ethanol/g yeast · h). Different flow rates and bead sizes were used to ‘optimize’ the productivity. The productivity of 3.34 mm beads at a flow rate of 8.8 litre h?1(superficial velocity: 0.12 cm s?1) was 95% higher than that at 1.0 l h?1. Maximum productivities of 0.34, 0.27, 0.22 g/g yeast· h were obtained (at a flow rate of 8.8 l h?1) for 9.2% yeast-immobilized beads of 3.34, 4.45 and 5.65 mm in diameter, respectively.  相似文献   

20.
The yeast Wickerhamomyces anomalus (the previous name was Pichia anomala) HN1-2 isolated from the mangrove ecosystem was found to be able to produce high level of both killer toxin and single cell protein. When the killer yeast cells were grown by batch cultivation in 5-l fermentor, crude protein in the cells, cell mass, reducing sugar, and diameter of the inhibition zone reached 56.0 g per 100 g of cell dry weight, 7.3 g per liter, 9.5 g per liter, and 19.0 mm, respectively within 12 h and this yeast synthesized a large amount of the essential amino acids, such as lysine (7.8%), methionine (1.8%), and leucine (9.0%). The crude killer toxin produced by the killer yeast isolate HN1-2 could kill the cells of Lodderomyces elongisporus, Candida albicans, Metschnikowia bicuspidata, Pichia guilliermondii, Saccharomyces cerevisiae, Yarrowia lipolytica, and Kluyveromyces aestuarii, which were widely distributed in natural marine environments. The results also showed that the undesirable yeast could be avoided during cell growth of the killer yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号