首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] components of Penicillium funiculosum have been immobilized on a soluble, high molecular weight polymer, poly(vinyl alcohol), using carbodiimide. The immobilized enzyme retained over 90% of cellulase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], and exo-β-d-glucanase [1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91] and β-d-glucosidase [β-d-glucoside glucohydrolase, EC 3.2.1.21] activities. The bound enzyme catalysed the hydrolysis of alkali-treated bagasse with a greater efficiency than the free cellulase. The potential for reuse of the immobilized system was studied using membrane filters and the system was found to be active for three cycles.  相似文献   

2.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

3.
In a preliminary study, trypsin (EC 3.4.21.4) and glucoamylase (exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) were immobilized on Spheron by the titanium-chelation method. The activity of trypsin immobilized on Spheron P100 000 was higher against tosyl-l-arginine 4-nitroanilide than against casein. The variation in the specific activities of glucoamylase immobilized on Spherons of different porosities to wards substrates of different molecular weights was examined.  相似文献   

4.
The influence of the pore structure of silica carriers (macroporous silica gels, silochromes and porous glasses) on the catalytic activity of immobilized glucoamylase (exo 1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase EC 3.2.1.3) has been studied. The dependence of the immobilized glucoamylase activity, in units g?1, on the carrier pore diameter was found to pass through a maximum within a range 70–100 nm. Macroporous silica gels can be used with success as carriers for glucoamylase immobilization instead of porous glasses and silochromes.  相似文献   

5.
The major types of components of cellulase [see 1,4-(1, 3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] have been adsorbed onto concanavalin A immobilized on Sepharose 4B, suggesting that they are glycoproteins. These components were covalently coupled to cyanogen bromide-activated Sepharose after aminoalkylation of their periodate-oxidized carbohydrate side chains to provide additional points of attachment of the enzyme to the support. Although there was only a 9% recovery of starting avicelase activity, the immobilized enzyme catalysed the hydrolysis of insoluble cellulose to glucose with greater efficiency than did free cellulase.  相似文献   

6.
Homogeneous and heterogeneous biocatalysis were both investigated as tools for barley starch syrup production. Barley starch was first liquefied by soluble heat-stable Bacillus sp. α-amylase EC 3.2.1.1 (1,4-α-d-glucan glucanohydrolase) Termamyl 60 L at 95°C, pH 6.5, to obtain slurries of varying DE-values up to ≈37. Alternatively, it was extruded with a Creusot-Loire BC 45 twin-screw extruder at 25% moisture, 150°C, for denaturation. After cooling and adjusting the pH to 4.5 or grinding, respectively, the pretreated starch was saccharified either by soluble or by immobilized Aspergillus niger glucoamylase EC 3.2.1.3 (1,4-α-d-glucan glucohydrolase) at 60°C, pH 4.5, to obtain glucose syrup of up to DE 96. The course of hydrolysis was followed by automated Biogel P-2 chromatographic analysis. Glucoamylase was immobilized either on a phenol-formaldehyde resin Duolite S 761 or on silanized Spherosil porous silica beads. Barley glucose syrup obtained was further continuously converted to high fructose syrup by a packed bed reactor of Actinoplanes missouriensis whole cell glucose isomerase (EC 5.3.1.5) Maxazyme entrapped within α-cellulose beads. We could conclude that barley starch may be used as an alternative raw material for biocatalytic starch syrup production.  相似文献   

7.
Aerobic cells of Trichoderma reesei have been immobilized by the radiation polymerization technique using fibrous substances and hydroxyethyl methacrylate. The enzyme [cellulase, 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] productivity and growth of the cells in the immobilized growing cells have been studied. The enzyme (filter paper) activity in the immobilized cells was comparable to that of the intact cells, showing that the cells immobilized with fibrous materials grow and become adhered to the surface of the fibrils. The filter paper activity of the immobilized cells was affected mainly by monomer concentration and the content of the fibrous materials, as well as the irradiation dose. It was demonstrated that in repeated batch culture of the immobilized cells the filter paper activity gave a constant value, and leakage of the cells was not observed.  相似文献   

8.
Trichoderma viride 1,4-β-d-glucan cellobiohydrolase (exo-cellobiohydrolase, 1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91) purified from a commercial product to electrophoretic homogeneity by a procedure including affinity and DEAE-Sephadex chromatography, has attached carbohydrates in addition to the glycoprotein constituents. These carbohydrates are lost by consecutive gel filtration steps in Sephadex G-25 columns, whereupon there is a rapid increase in enzymatic activity. A single gel filtration step can eliminate d-glucose or cellobiose added to a solution of this enzyme, but not the carbohydrates attached during incubation with Avicel.After free carbohydrate elimination from crude cellulase complexes by Sephadex G-25 chromatography, liberation of d-glucose following incubation at 50°C and pH 4.8 was observed. This indicates that some carbohydrates remain bound after gel filtration. The elimination of carbohydrate from whole cellulase complex [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] was favoured by a yeast treatment, with a simultaneous increase in activity, but the process is not reproducible, as a secondary inactivation process exists.  相似文献   

9.
An extracellular 1,4-α-d-glucan 6-α-d-glucosyltransferase [d-glucosyltransferase, 1,4-α-d-glucan:1,4-α-d-glucan(d-gluco 6-α-d-glucosyltransferase, EC 2.4.1.24] from Aspergillus niger R-27 has been purified and the kinetics of its proteolytic inactivation with subtilisin studied. The purified enzyme was shown to be homogeneous using disc polyacrylamide gel electrophoresis. It contained 16.0% mannose, 0.19% glucose and 2.95% 2-acetamido-2-deoxy-d-glucose. The characteristic feature of the proteolytic degradation of glucosyltransferase is rapid hydrolysis of ~12 peptide bonds per mol and the formation of an active intermediate product which is more resistant to further proteolysis, but is easily heat-inactivated. The isolation and some properties of glucosyltransferase are also described.  相似文献   

10.
Commercial cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma viride and pectinase [poly(1,4-α-d-galacturonide) glycanohydrolase, EC 3.2.1.15] from Aspergillus niger have been applied to produce fermentation syrups from sugar-beet pulp and potato fibre. Cellulosic, hemicellulosic and pectic polysaccharides of these substrates were hydrolysed extensively. Recovery of enzymes has been investigated in a packed-column reactor, connected with a hollow-fibre ultrafiltration unit. Enzymes appeared to be stable in this type of reactor, although part of the enzyme activity was lost, especially by adsorption onto the substrate residue.  相似文献   

11.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

12.
The major components of cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and d-xylanase (see 1,4-β-d-xylan xylanohydrolase, EC 3.2.1.8) complexes have been immobilized on glass beads activated by 3-aminopropyltriethoxysilane or 3-glycidoxypropyltrimethoxysilane. The final preparations contained over 20 mg protein g?1 glass beads. The activity retained was 71.6–98.1% for cellulase complexes and 81–100% for d-xylanase complexes. The immobilization of the enzymes spread their optimum pH range. Cellulose and d-xylan were quantitatively hydrolysed by the immobilized enzymes. The major reaction products were identified as a d-glucose and d-xylose respectively.  相似文献   

13.
Sweet potato beta-amylase [EC 3.2.1.2, alpha 1,4-D-glucan maltohydrolase]-catalyzed hydrolyses of aryl beta-maltotriosides with substituents, NO2-, Cl-, and Br- at the o-, m-, and p-positions in the phenyl ring were studied at pH 4.8 and 25 degrees C. The hydrolyses of a few of the maltotriosides by soybean beta-amylase [EC 3.2.1.2, alpha-1,4-D-glucan maltohydrolase] were also studied at pH 5.4 and 25 degrees C. It was found that the aryl beta-maltotriosides were preferentially hydrolyzed into maltose and aryl beta-D-glucosides by both beta-amylases. The Michaelis constant Km and the molecular activity ko were determined for the hydrolyses of these maltotriosides and compared with those of maltotriose and maltotetraose. Aryl beta-maltotriosides were more rapidly hydrolyzed than maltotriose by a factor of 30--80, and more slowly hydrolyzed than maltotetraose by a factor of 10--30, depending on the kinds of substituents. The rapid hydrolysis of aryl beta-maltotrioside as compared with maltotriose may be due to the interaction of an aryl group with the subsite of beta-amylase. This is in contrast with glucoamylase [EC 3.2.1.3, alpha-1,4-D-glucan glucohydrolase] of Rhizopus niveus-catalyzed hydrolysis of phenyl beta-maltoside, whose phenyl group does not interact so much with the subsite of the enzyme.  相似文献   

14.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   

15.
Starch syrup for ethanol fermentation is conventionally produced by acid or enzymatic hydrolysis. Recently, however, promising results have been obtained using HTST-extrusion cooking in starch liquefaction. The starchy material was pregelatinized and preliquefied in a Creusot-Loire BC45 twin-screw HTST-extrusion cooker before simultaneous saccharification by amyloglucosidase and fermentation by Saccharomyces cerevisiae or Zymomonas mobilis. With pretreatment of milled whole grain or starch by HTST-extrusion cooking a significantly shorter fermentation time could be achieved. Maximum ethanol yield was obtained in 45 h using conventional yeast and amyloglucosidase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) dosage, even without addition of Termamyl α-amylase (1,4-α-d-glucan glucanohydrolase, EC 3.2.1.1) during thermomechanical liquefaction. Immobilized yeast could also be used to produce ethanol both by a batch or continuous process. In this case, for a continuous process the DE-value of the syrup should be sufficiently high. A model for ethanol production as a function of dry matter, fermentation time, and yeast and Termamyl quantities has been developed.  相似文献   

16.
Glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 5.5– 6.0 units g?1solid. The optimum pH for catalytic activity was pH 3.8. The apparent optimum temperature was found at 60°C. With soluble starch as substrate the Km value was 14 mg ml?1. The pH for maximum stability was pH 4.0–4.5. In the presence of 8 m urea the immobilized glucoamylase retained most of its catalytic activity but it was more susceptible to guanidinium hydrochloride than the soluble enzyme. The practical applicability of immobilized glucoamylase was tested in batch process and continuous operation.  相似文献   

17.
Glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) from A. niger was immobilized on cationic nonporous glass beads (13–44 μm) by electrostatic adsorption followed by rosslinking with glutaraldehyde. Over 80% of the enzyme's total soluble activity was expressed upon immobilization. d-Glucose production from maltodextrins was virtually complete, suggesting that the lack of pores can eliminate the problem of product reversion. Immobilized glucoamylase showed decreased stability upon heating, compared with the soluble enzyme.  相似文献   

18.
A new low-cost glucoamylase preparation for liquefaction and saccharification of starchy raw materials in a one-stage system was developed and characterized. A non-purified biocatalyst with a glucoamylase activity of 3.11 U/mg, an alpha-amylase activity of 0.12 WU/mg and a protein content of 0.04 mg protein/mg was obtained from a shaken-flask culture of the strain Aspergillus niger C-IV-4. Factors influencing the enzymatic hydrolysis of starchy materials such as reaction time, temperature and enzyme and substrate concentration were standardized to maximize the yield of glucose syrup. Thus, a 90% conversion of 5% starch, a 67.5% conversion of 5% potato flour and a 55% conversion of 5% wheat flour to sweet syrups containing up to 87% glucose was reached in 3 h using 1.24 glucoamylase U/mg hydrolyzed substrate. The application of such glucoamylase preparation and a commercially immobilized glucose isomerase for the production of glucose-fructose syrup in a two-stage system resulted in high production of stable glucose/fructose blends with a fructose content of 50%. A high concentration of fructose in obtained sweet syrups was achieved when isomerization was performed both in a batch and repeated batch process.  相似文献   

19.
Extracellular and intracellular amylases have been purified from a thermophilic Bacillus stearothermophilus and further studies have been made with the purified enzyme. The molecular weights for extra- and intracellular α- and β-amylases were found to be 47 000, 58 000, 39 000 and 67 000, respectively. α-Amylase (1,4-α-d-glucan glucanohydrolase, EC 3.2.1.1) and glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) were glycoproteins, whereas β-amylase (1,4-α-d-glucan maltohydrolase, EC 3.2.1.2) had little or no carbohydrate moiety. Extracellular FI (α-amylase), FIII (glucoamylase), FIV and FV (α-amylase) had carbohydrate moieties of 14.4, 27.0, 11.0 and 12.5%, respectively, whereas intracellular amylases FI (α-amylase), FII (β-amylase) and FIII (α-amylase) contained 15.2, 0.8 and 13.4% carbohydrate, respectively. The amino acid profile of the amylase protein digest showed a total number of 16 amino acids with aspartic acid showing the highest value followed by glutamic acid and leucine plus isoleucine. Compared to other thermostable amylases, proline and histidine contents were low. Both α- and β- amylase had the - SH group at their active site, which was essential for enzyme activity. EDTA and parachloromercuribenzoate exhibited dose dependent non-competitive inhibition of enzyme activity indicating the involvement of a divalent cation and the - SH group for activity.  相似文献   

20.
A comparison has been made between the 3,5-dinitrosalicylic acid (DNS) and alkaline copper methods of assaying for reducing sugars released during the enzymatic hydrolysis of cellulose by culture filtrates from Trichoderma harzianum E58. The DNS method was shown to be more readily influenced by the incubation conditions and by components derived from lignocellulosic substrates. The endo-1,4-β-d-glucanase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] values obtained with the DNS assay were always considerably higher than those obtained with the alkaline copper method and did not give reducing values that were proportional to the actual number of hemiacetal reducing groups. The alkaline copper assay was not affected by the degree of polymerization of the substrate. Although this latter method appeared to be superior to the DNS assay it was still affected by the incubation conditions, nature of the substrate and the influence of other cellulase components on each of the specific enzyme assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号