首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular metabolite analyses by 13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2 aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly 13C-labelled acetate (13CH3-COOH or CH3-13COOH) supported that both the 13C nuclei give rise to bicarbonate and CO2 aq. The observed metabolite(s) upon further incubation led to the production of starch and triacylglycerol (TAG) in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2 aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2 aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2 aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.  相似文献   

2.
The effect of tannins was investigated on growth and α-amylase (α-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) production by the edible fungal species Calvatia gigantea, grown in a laboratory-scale fermenter on acorn starch media containing up to 2 g tannins l−1. No inhibition of both growth and amylase excretion was observed when the fungus was cultivated on media containing 40 to 100 times higher tannin concentration than that reported to inhibit microbial growth. Amylase excretion was enhanced when starch was dry sterilized but specific growth rate was higher when starch was wet sterilized. Biomass and amylase production increased with increasing substrate concentration and specific growth rate reached its maximum value at 20 g l−1 starch concentration. The optimum pH of biomass and amylase productionwas 5.0–5.5 and 6.0−6.5 respectively and that of temperature was 29–32 and 29–30°C respectively. Maximum yields of 68 250 U amylase and 0.58–0.60 g biomass g−1 acorn were obtained at optimum growth conditions. A plot of reciprocal growth rate vs. reciprocal starch concentration made it possible to calculate Ks = 0.84 g acorn starch l−1 and μmax = 0.249 h−1.  相似文献   

3.
The ability to cope with NH4+-N was studied in the littoral helophytes Phragmites australis and Glyceria maxima, species commonly occupying fertile habitats rich in NH4+ and often used in artificial wetlands. In the present study, Glyceria growth rate was reduced by 16% at 179 μM NH4+-N, and the biomass production was reduced by 47% at 3700 μM NH4+-N compared to NO3-N. Similar responses were not found in Phragmites. The amounts (mg g−1 dry wt) of starch and total non-structural carbohydrates (TNC) in rhizomes were significantly lower in NH4+ (8.9; 12.2 starch; 20.1; 41.9 TNC) compared to NO3 treated plants (28.0; 15.6 starch; 58.5; 56.3 TNC) in Phragmites and Glyceria, respectively. In addition, Glyceria showed lower amounts (mg g−1 dry wt) of soluble sugars, TNC, K+, and Mg2+ in roots under NH4+ (5.6; 14.3; 20.6; 1.9) compared to NO3 nutrition (11.6; 19.9; 37.9; 2.9, for soluble sugars, TNC, K+, and Mg2+, respectively), while root internal levels of NH4+ and Ca2+ (0.29; 4.6 mg g−1 dry wt, mean of both treatments) were only slightly affected. In Phragmites, no changes in soluble sugars, TNC, Ca2+, K+, and Mg2+ contents of roots (7.3; 14.9; 5.1; 17.3; 2.6 mg g−1 dry wt, means of both treatments) were found in response to treatments. The results, therefore, indicate a more pronounced tolerance towards high NH4+ supply in Phragmites compared to Glyceria, although the former may be susceptible to starch exhaustion in NH4+-N nutrition. In contrast, Glyceria's ability to colonize fertile habitats rich in NH4+ is probably related to the avoidance strategy due to shallow rooting or to the previously described ability to cope with high NH4+ levels when P availability is high and NO3 is also provided.  相似文献   

4.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

5.
Characterization of starch breakdown in the intact spinach chloroplast   总被引:23,自引:19,他引:4       下载免费PDF全文
Starch degradation with a rate of 1 to 2 microgram-atom carbon per milligram chlorophyll per hour was monitored in the isolated intact spinach (Spinacia oleracea) chloroplast which had been preloaded with 14C-starch photosynthetically from 14CO2. Starch breakdown was dependent upon inorganic phosphate and the 14C-labeled intermediates formed were principally those of the Embden-Meyerhof pathway from glucose phosphate to glycerate 3-phosphate. In addition, isotope was found in ribose 5-phosphate and in maltose and glucose. The appearance of isotope in the intermediates of the Embden-Meyerhof pathway but not in the free sugars was dependent upon the inorganic phosphate concentration. Dithiothreitol shifted the flow of 14C from triose-phosphate to glycerate 3-phosphate. Iodoacetic acid inhibited starch breakdown and caused an accumulation of triose-phosphate. This inhibition of starch breakdown was overcome by ATP. The inhibitory effect of ionophore A 23187 on starch breakdown was reversed by the addition of magnesium ions. The formation of maltose but not glucose was impaired by the ionophore. The inhibition of starch breakdown by glycerate 3-phosphate was overcome by inorganic phosphate. Fructose 1,6-bisphosphate and ribose 5-phosphate did not affect the rate of polysaccharide metabolism but increased the flow of isotope into maltose. Starch breakdown was unaffected by the uncoupler (trifluoromethoxyphenylhydrazone), electron transport inhibitors (rotenone, cyanide, salicylhydroxamic acid), or anaerobiosis. Hexokinase and the dehydrogenases of glucose 6-phosphate and gluconate 6-phosphate were detected in the chloroplast preparations. It was concluded (a) that chloroplastic starch was degraded principally by the Embden-Meyerhof pathway and by a pathway involving amylolytic cleavage; (b) ATP required in the Embden-Meyerhof pathway is generated by substrate phosphorylation in the oxidation of glyceraldehyde 3-phosphate to glycerate 3-phosphate; and (c) the oxidative pentose phosphate pathway is the probable source of ribose 5-phosphate.  相似文献   

6.
Mohabir G  John P 《Plant physiology》1988,88(4):1222-1228
A sharp temperature optimum is observed at 21.5°C when the incorporation of [14C]sucrose into starch is measured with discs cut from developing tubers of potato (Solanum tuberosum L. cv Desirée). By contrast, increasing temperatures over the range 9 to 31°C only enhance release of 14C to respiratory CO2 and incorporation of 14C into the ethanolsoluble fraction. By comparison, starch synthesis in discs from developing corms of cocoyam (Colocasia esculenta L. Schott) is increased by raising the temperature from 15 to 35°C. The significance of a relatively low temperature optimum for starch synthesis in potato is discussed in relation to the yield limitations imposed by continuously high soil temperatures. Amyloplasts isolated from protoplasts prepared from developing potato tubers contain activities of alkaline pyrophosphatase, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphatase, and phosphoglucomutase in addition to ADP-glucose-pyrophosphorylase, starch phosphorylase and starch synthase. Cell-free amyloplasts released by thinly slicing developing potato tubers synthesize starch from [14C]triose-phosphate generated from [14C]fructose-1,6-bisphosphate in the reaction medium. This starch synthesis is inhibited by addition of 10 millimolar inorganic phosphate and requires amyloplast integrity, suggesting the operation of a triose-phosphate/inorganic phosphate exchange carrier at the amyloplast membrane. The temperature optimum at 21.5°C observed with tissue discs is not observed with amyloplasts.  相似文献   

7.
Exposure (30 minutes) of leaf-free mesophyll cells from the C-3 plant, Papaver somniferum, to concentrations of sulfite (SO2 + HSO3 + SO3) up to 20 millimolar stimulated the rate of CO2 incorporation as much as 30%. The sulfite rapidly affects the metabolism of newly incorporated CO2. Ammonia incorporation into glutamine and subsequent transamination reactions were stimulated during the short term exposure periods while glycolate metabolism apparently was inhibited by bisulfite at two points in the pathway. The results further indicate that glycolate is the major precursor of glycine in these cells. Prolonged periods of exposure (24 hours) to sulfite had somewhat different effects on carbon metabolism: the high concentrations (10 to 20 millimolar) severely inhibited all aspects of cellular metabolism while lower concentrations (1 millimolar) appeared to inhibit ammonia incorporation but stimulated synthesis of sucrose and starch.  相似文献   

8.
The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate (k d) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h−1 whereas for faba beans, peas and maize no differences in k d were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro k d of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the k d of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro k d of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction.  相似文献   

9.
The gene (1,542 bp) encoding thermostable Ca2+-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.  相似文献   

10.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants.  相似文献   

11.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

12.
Phaseolus vulgaris L. leaves were subjected to various light, CO2, and O2 levels and abscisic acid, then given a 10 minute pulse of 14CO2 followed by a 5 minute chase with unlabeled CO2. After the chase period, very little label remained in the ionic fractions (presumed to be mostly carbon reduction and carbon oxidation cycle intermediates and amino acids) except at low CO2 partial pressure. Most label was found in the neutral, alcohol soluble fraction (presumed sucrose) or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate (slope = 0.35). Starch formation increased linearly with assimilation rate (slope = 0.56) but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO2 in combination with low O2 (thought to disrupt control of carbon metabolism) caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO2 assimilation, with sucrose the preferred product at very low assimilation rates.  相似文献   

13.
Carbon isotope discrimination (Δ) was analyzed in leaf starch and soluble sugars, which represent most of the recently fixed carbon. Plants of three C3 species (Populus nigra L. × P. deltoides Marsh., Gossypium hirsutum L. and Phaseolus vulgaris L.) were kept in the dark for 24 hours to decrease contents of starch and sugar in leaves. Then gas exchange measurements were made with constant conditions for 8 hours, and subsequently starch and soluble sugars were extracted for analysis of carbon isotope composition. The ratio of intercellular, pi, and atmospheric, pa, partial pressures of CO2, was calculated from gas exchange measurements, integrated over time and weighted by assimilation rate, for comparison with the carbon isotope ratios in soluble sugars and starch. Carbon isotope discrimination in soluble sugars correlated strongly (r = 0.93) with pi/pa in all species, as did Δ in leaf starch (r = 0.84). Starch was found to contain significantly more 13C than soluble sugar, and possible explanations are discussed. The strong correlation found between Δ and pi/pa suggests that carbon isotope analysis in leaf starch and soluble sugars may be used for monitoring, indirectly, the average of pi/pa weighted by CO2 assimilation rate, over a day. Because pi/pa has a negative correlation with transpiration efficiency (mol CO2/mol H2O) of isolated plants, Δ in starch and sugars may be used to predict differences in this efficiency. This new method may be useful in ecophysiological studies and in selection for improved transpiration efficiency in breeding programs for C3 species.  相似文献   

14.
In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To = 61.25 °C, Tp = 64.5 °C, Tc = 67.5 °C), gelatinization temperature (ΔT = 6.3 °C) ranges and enthalpy changes (ΔH = 13.21 J g−1) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications.  相似文献   

15.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

16.
Carbon partitioning and export from mature cotton leaves   总被引:4,自引:0,他引:4       下载免费PDF全文
The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state 14CO2 labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period (r = 0.934) and with nocturnal leaf respiration (r = 0.954). Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined.  相似文献   

17.
Häusler RE  Schlieben NH  Flügge UI 《Planta》2000,210(3):383-390
 Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (αTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; CJA TPT=0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a CJStarch TPT=−0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (CJSuc TPT=0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in αTPT plants with an apparent control coefficient of CJRes TPT=0.24. If the control on sucrose biosynthesis is referred to as “gain of carbon” (positive control) and the control on starch biosynthesis as well as dark respiration as a “loss of carbon” (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was CJETR TPT=0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air. Received: 26 March 1999 / Accepted: 21 August 1999  相似文献   

18.
Soybean plants (Glycine max [L.] Merr. cv Williams), which were symbiotic with Bradyrhizobium japonicum, and which grew well upon reduced nitrogen supplied solely through N2 fixation processes, often exhibited excess accumulation of starch and sucrose and diminished soluble protein in their source leaves. Nitrate and ammonia, when supplied to the nodulated roots of N2-fixing plants, mediated a reduction of foliar starch accumulation and a corresponding increase in soluble protein in the source leaves. This provided an opportunity to examine the potential metabolic adjustments by which NO3 and NH4+ (N) sufficiency or deficiency exerted an influence upon soybean leaf starch synthesis. When compared with soybean plants supplied with N, elevated starch accumulation was focused in leaf palisade parenchyma tissue of N2-fixing plants. Foliar activities of starch synthesis pathway enzymes including fructose-1,6-bisphosphate phosphatase, phosphohexoisomerase, phosphoglucomutase (PGM), as well as adenosine diphosphate glucose pyrophosphorylase (in some leaves) exhibited highest activities in leaf extracts of N2-fixing plants when expressed on a leaf protein basis. This was interpreted to mean that there was an adaptation of these enzyme activities in the leaves of N2-fixing plants, and this contributed to an increase in starch accumulation. Another major causal factor associated with increased starch accumulation was the elevation in foliar levels of fructose-6-phosphate, glucose-6-phosphate, and glucose-1-phosphate (G1P), which had risen to chloroplast concentrations considerably in excess of the Km values for their respective target enzymes associated with starch synthesis, e.g. elevated G1P with respect to adenosine diphosphate glucose pyrophosphorylase (ADPG-PPiase) binding sites. The cofactor glucose-1,6-bisphosphate (G1,6BP) was found to be obligate for maximal PGM activity in soybean leaf extracts of N2-fixing as well as N-supplemented plants, and G1,6BP levels in N2-fixing plant leaves was twice that of levels in N-supplied treatments. However the concentration of chloroplastic G1,6BP in illuminated leaves was computed to be saturating with respect to PGM in both N2-fixing and N-supplemented plants. This suggested that the higher level of this cofactor in N2-fixing plant leaves did not confer any higher PGM activation and was not a factor in higher starch synthesis rates. Relative to plants supplied with NO3 and NH4+, the source leaf glycerate-3-phosphate (3-PGA) and orthophosphate (Pi) concentrations in leaves of N2-fixing plants were two to four times higher. Although Pi is a physiological competitive inhibitor of leaf chloroplast ADPG-PPiase, and hence, starch synthesis, elevated chloroplast 3-PGA levels in N2-fixing plant leaves apparently prevented interference of Pi with ADPG-PPiase catalysis and starch synthesis.  相似文献   

19.
Intact chloroplasts were obtained from mesophyll protoplasts isolated from Mesembryanthemum crystallinum in the C3 or Crassulacean acid metabolism (CAM) photosynthetic mode, and examined for the influence of inorganic phosphate (Pi) on aspects of bicarbonate-dependent O2 evolution and CO2 fixation. While the chloroplasts from both modes responded similarly to varying Pi, some features appear typical of chloroplasts from species capable of CAM, including a relatively high capacity for photosynthesis in the absence of Pi, a short induction period, and resistance to inhibition of photosynthesis by high levels of Pi. In the absence of Pi the chloroplasts retained 75–85% of the 14CO2 fixed and the total export of dihydroxyacetone phosphate was low compared with the rate of photosynthesis. In CAM plants the ability to conduct photosynthesis and retain most of the fixed carbon in the chloroplasts at low external Pi concentrations may enable storage of carbohydrates which are essential for providing a carbon source for the nocturnal synthesis of malic acid. At high external Pi concentrations (e.g. 10 25 mM), the amount of total dihydroxyacetone phosphate exported to the assay medium relative to the rate of photosynthesis was high while the products of 14CO2 fixation were largely retained in the chloroplasts which indicates starch degradation is occurring at high Pi levels. Starch degradation normally occurs in CAM plants in the dark; high levels of Pi may induce starch degradation in the light which has the effect of limiting export of the immediate products of photosynthesis and thus the degree of Pi inhibition of photosynthesis with the isolated chloroplast.  相似文献   

20.
In this study, we measured the total pool sizes of key cellular metabolites from nitrogen-limited cells of Selenastrum minutum before and during ammonium assimilation in the light. This was carried out to identify the sites at which N assimilation is acting to regulate carbon metabolism. Over 120 seconds following NH4+ addition we found that: (a) N accumulated in glutamine while glutamate and α-ketoglutarate levels fell; (b) ATP levels declined within 5 seconds and recovered within 30 seconds of NH4+ addition; (c) ratios of pyruvate/phosphoenolpyruvate, malate/phosphoenolpyruvate, Glc-1-P/Glc-6-P and Fru-1,6-bisphosphate/Fru-6-P increased; and (d) as previously seen, photosynthetic carbon fixation was inhibited. Further, we monitored starch degradation during N assimilation over a longer time course and found that starch breakdown occurred at a rate of about 110 micromoles glucose per milligram chlorophyll per hour. The results are consistent with N assimilation occurring through glutamine synthetase/glutamate synthase at the expense of carbon previously stored as starch. They also indicate that regulation of several enzymes is involved in the shift in metabolism from photosynthetic carbon assimilation to carbohydrate oxidation during N assimilation. It seems likely that pyruvate kinase, phosphoenolpyruvate carboxylase, and starch degradation are all activated, whereas key Calvin cycle enzyme(s) are inactivated within seconds of NH4+ addition to N-limited S. minutum cells. The rapid changes in glutamate and triose phosphate, recently shown to be regulators of cytosolic pyruvate kinase, are consistent with them contributing to the short-term activation of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号