首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on base-treated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of Trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate.  相似文献   

2.
The plasmid pND71, which encodes beta-glucosidase (cellobiase) activity, cloned from the cellulolytic Pseudomonad, PS2-2, was mobilized by conjugation into 10 Pseudomonas strains. The highest specific activity was produced by 17498 (pND71) and the properties of the enzyme produced from this transconjugant were studied. The enzyme was shown to be cell associated, to have a temperature optimum of 37 degrees C, a pH optimum of 7.0 and Km values of 1.33 and 2.94 mM for pNPG and cellobiose respectively. It was competitively inhibited by glucose, with a Ki of 30 mM. Evidence was obtained which suggested that the enzyme was produced constitutively and that synthesis was not repressed by glucose. When culture preparations were used in combination with Trichoderma reesei QM9414 and C30 enzyme preparations to saccharify cellulose, 17498 (pND71) was more effective than preparations of PS2-2 in acting synergistically with T. reesei to solubilize more carbohydrate and produce more glucose.  相似文献   

3.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

4.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

5.
This paper reports the isolation of mutants of the white-rot fungus Sporotrichum pulverulentum and the results of a survey of enzymic activity among these mutants. The strains were screened for extracellular cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) production in shake flask experiments. Apart from strain 63-2, strains 6, 63, 9, L5, E-1 and UV-18 showed equal or higher endo-1,4-β-d-glucanase (cellulase), filter paper-degrading and β-d-glucosidase activities than S. pulverulentum. The cellulase activity obtained, measured as filter paper activity, was comparable to that reported for Trichoderma reesei QM9414. However, the β-d-glucosidase activity was about six times higher than for the QM9414 strain. The pH and temperature-activity profiles of crude β-d-glucosidase preparations from the various strains were determined and were found to be identical. The thermal stability at pH 4.5 and 40°C was 5 days for all these preparations.  相似文献   

6.
Summary Production and release of cellulolytic enzymes by Trichoderma reesei QM 9414 were studied under induced and non-induced conditions. For that purpose, a method was developmed to produce cellulases by Trichoderma reesei QM 9414 using the soluble inducer, cellobiose, as the only carbon source. The production was based on continuous feeding of cellobiose to a batch culture. For optimum production, the cellobiose supply had to be adjusted according to the consumption so that cellobiose was not accumulated in the culture. With a proper feeding program the repression and/or inactivation by cellobiose could be avoided and the cellulase production by Trichoderma reesei QM 9414 was at least equally as high as with cellulose as the carbon source.During the cultivation, specific activities against filter paper, carboxymethyl cellulose (CMC) and p-nitrophenyl glucoside were analyzed from the culture medium as well as from the cytosol and the cell debris fractions. There was a base level of cell debris bound hydrolytic activity against filter paper and p-nitrophenyl glucoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper and CMC hydrolyzing enzymes, which were actively released into the medium even in the early stages of cultivation. -Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.  相似文献   

7.
This paper reports the isolation of mutants of the white-rot fungus Sporotrichum pulverulentum and the results of a survey of enzymic activity among these mutants. The strains were screened for extracellular cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] and β- -glucosidase (β- -glucoside glucohydrolase, EC 3.2.1.21) production in shake flask experiments. Apart from strain 63-2, strains 6, 63, 9, L5, E-1 and UV-18 showed equal or higher endo-1,4-β- -glucanase (cellulase), filter paper-degrading and β- -glucosidase activities than S. pulverulentum. The cellulase activity obtained, measured as filter paper activity, was comparable to that reported for Trichoderma reesei QM9414. However, the β- -glucosidase activity was about six times higher than for the QM9414 strain. The pH and temperature-activity profiles of crude β- -glucosidase preparations from the various strains were determined and were found to be identical. The thermal stability at pH 4.5 and 40°C was 5 days for all these preparations.  相似文献   

8.
Summary The cellulolytic enzyme complexes secreted by the fungus Trichoderma reesei QM 9414 and its mutants M 5, M 6, MHC 15, and MHC 22 were characterized by determining their specific filter-paper (FP)-, carboxymethylcellulase (Cx)-and -glucosidase (G)-activities. They were characterised further by measuring their Cx and G profiles after separation on an isoelectrofocusing column over the pH range 3–10. While the overall FP-activity was roughly equal in all preparations, the specific -glucosidase activity was highest in mutants MHC 15 and MHC 22 which are distingiushed morphologically from the parent strain, QM 9414, by a higher degree of branching of their hyphae. Two peaks of -glucosidase activity were detected by isoelectric focusing in preparations from QM 9414 and M 6, none in the enzyme from the mutant M 5 while 3 and 4 peaks respectively were found in preparations from morphological mutants MHC 15 and MHC 22. The higher -glucosidase activity in these last two preparations was also reflected in the higher glucose to cellobiose ratio in the initial stages of cellulose hydrolysis by the individual enzyme preparations.  相似文献   

9.
A beta-glucosidase (E.C. 3.2.1.21) was isolated from the culture filtrate of fungus Trichoderma reesei QM 9414 grown in continuous culture with biomass retention. The crude extracellular enzyme preparation was fractionated by a three-step purification procedure [chromatography on Fractogel HW-55 (S) and Bio-Gel A 0.5 plus final preparative isoelectric focusing] to yield three beta-glucosidases with isoelectric points at pH 8.4, 8.0, and 7.4. Only one enzyme (pi 8.4) met the stringent criterion of being homogeneous according to titration curve analysis. This enzyme was then characterized not to be a glycoprotein, although the native protein contained 35% carbohydrate (as glucose). It was found to have an apparent molar mass of 7 x 10(4) g/mol (SDS-PAGE), exhibited its optimum activity towards cellobiose at pH 4.5 and 70 degrees C (30 min test), and lost less than 3% activity at 50 degrees C over a period of 7 h. The K(M) values towards cellobiose and p-nitrophenyl-beta-D-glucopyranoside were determined to be 0.5mM and 0.3mM, respectively. The enzyme hydrolyzed cellodextrins (cellotriose to cellooctaose) by sequentially splitting off glucose units from the nonreducing end of the oligomers. The extent of the observed transfer reactions varied with the initial substrate concentration. No enzyme activity towards microcrystalline cellulose or carboxymethylcellulose could be detected. The classification of the enzyme as beta-glucosidase or exo-beta-1,4-glucan glucohydrolase is discussed with respect to the exhibited hydrolytic activities.  相似文献   

10.
Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for cellulase production by Trichoderma reesei QM9414 and T. reesei MCG77 in solid-state fermentation using rice bran as substrate. Initial pH, moisture content and temperature were optimized using filter paper activity (FPA) as response. Statistical analysis of the results for T. reesei QM9414 showed that only moisture content had significant effect on cellulase activity and had a linear effect on enzyme activity (maximum enzyme activities were obtained at 70% moisture content). The results for T. reesei MCG77 showed that temperature and moisture content were the most significant parameters for cellulase activity. The optimum cellulase production was in the temperature range of 25-30 degrees C and moisture content between 55% and 70%. After the optimization, the FPA in T. reesei MCG77 was increased by 2.5 folds compared to that of T. reesei QM9414.  相似文献   

11.
The combined effect of pH and temperature on carboxymethyl cellulase from two intergeneric fusants (M 14 and M 62) of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 was studied using response surface methodology. A central composite design for two variables was employed for the optimization studies. This study was compared with similar studies carried out with Trichoderma reesei QM 9414. The optimal pH and temperature for the enzymes derived from these organisms were: for the fusant M 14—pH 5.7 and 41.7°C, for the fusant M 62—pH 5.3 and 43°C, and for Trichoderma reesei QM 9414—pH 4.31 and 38.3°C. Received 5 May 1997/ Accepted in revised form 17 July 1998  相似文献   

12.
The growth of Trichoderma reesei QM9414 in shake flasks at 28 degrees C on hemicellulose substrates and bagasse resulted in rather low yields of hemicellulolytic enzymes (1.0-1.5 units/mL xylanase and 0.05-0.08 units/mL beta-xylosidase). The influence of pH on the synthesis of beta-xylosidase was greater than on the synthesis of xylanase. Both xylanase and beta-xylosidase showed optimal activity at pH 4-5 and 55-60 degrees C. Xylanase was stable at pH 2-10 but was heat labile and totally inactivated after 1 h at 65 degrees C. Enzyme stability towards heat could be increased in the presence of bovine serum albumin. The beta-xylosidase was more tolerant to heat, but stable over a pH range 2.5-6.0. The D-xylose inhibited both enzymes in a competitive manner. Hemicellulose (heteroxylan) was degraded to the extent of 30-40%within 24 h. The degree of hydrolysis decreased as the substrate concentration increased and increased with increased amounts of enzyme. Multiple enzyme doses resulted in increased saccharification in reduced times. The degree of hydrolysis was influenced by the amount of beta-xylosidase present in the hemicellulolytic enzyme preparation. The -;xylosidase was demonstrated to play an important role in the overall conversion of heteroxylan into xylose that is analogous to the role of beta-glucosidase in the saccharification of cellulose by cellulases.  相似文献   

13.
Bioenergy, particularly biofuel, from lignocellulosic biomass has been considered as one of the most promising renewable and sustainable energies. The industrial productivity and efficiency of microbial lignocellulolytic enzymes for cellulosic biofuel applications are significantly affected by pH of culture condition. This study established and compared hydrolytic protein expression profiles of Trichoderma reesei QM6a, QM9414, RUT C30 and QM9414MG5 strains at different pH in cellulosic culture media. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of secretome of T. reesei cultured from pH 3.0-9.0 revealed significantly higher hydrolytic protein expressions at acidic pH. The Bray-Curtis similarity indices, clustering, and Shannon diversity index elucidated differences in protein secretion at different pHs in individuals and among the strains. This study demonstrated a comparative lignocellulolytic enzyme secretion profile of T. reesei and its mutants at different pHs and provides pH sensitive and resistance enzyme targets for industrial lignocellulose hydrolysis.  相似文献   

14.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

15.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

16.
A previously isolated cellodextrin glucohydrolase (beta-glucosidase) from Trichoderma reesei QM 9414 is characterized using beta-1,4-glucose oligomers with defined degrees of polymerization as soluble substrates. The enzyme splits off glucose units from the nonreducing chain ends of cellooligomers. Besides this hydrolytic activity there is also evidence for transfer activity depending on the concentration and degree of polymerization of substrates. Concentration-time-course data have been gathered for the degradation of cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose covering a wide range of enzyme and substrate concentrations. A Michaelis-Menten type kinetic model has been developed, which is able to satisfactorily describe the complex system of parallel and series reactions during the conversion of oligomers to glucose. The only kind of inhibition considered is competitive inhibition by the final product glucose. The model takes into account the formation of multiple enzyme-substrate complexes and is limited to those conditions, in which no transglucosylation products are observed. Cellodextrins with higher degrees of polymerization are found to be better substrates for this enzyme than is the dimer cellobiose.  相似文献   

17.
The ascomycete Hypocrea jecorina, an industrial (hemi)cellulase producer, can efficiently degrade plant polysaccharides. At present, the biology underlying cellulase hyperproduction of T. reesei, and the conditions for the enzyme induction, are not completely understood. In the current study, three different strains of T. reesei, including QM6a (wild-type), and mutants QM9414 and RUT-C30, were grown on 7 soluble and 7 insoluble carbon sources, with the later group including 4 pure polysaccharides and 3 lignocelluloses. Time course experiments showed that maximum cellulase activity of QM6a and QM9414 strains, for the majority of tested carbon sources, occurred at 120 hrs, while RUT-C30 had the greatest cellulase activity around 72 hrs. Maximum cellulase production was observed to be 0.035, 0.42 and 0.33 µmol glucose equivalents using microcrystalline celluloses for QM6a, QM9414, and RUTC-30, respectively. Increased cellulase production was positively correlated in QM9414 and negatively correlated in RUT-C30 with ability to grow on microcrystalline cellulose.  相似文献   

18.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

19.
Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.  相似文献   

20.
A 1,4-beta-glucan glucanohydrolase (EC 3.2.1.4) was isolated from culture filtrates of the fungus Trichoderma viride QM 9414 by molecular-sieve chromatography on Bio-Gel P-30, ion-exchange chromatography on DEAE-Sephadex A-50 and isoelectric focusing in a density gradient. Polyacrylamide-gel electrophoresis at two different pH values, analytical isoelectric focusing in a polyacrylamide-gel slab and molecular-sieve chromatography of the reduced and alkylated enzyme in a denaturing medium indicated a homogeneous protein. The enzyme has a mol.wt. of 51,000 and is not a glycoprotein. The pI was found to be 4.66 at 23 degrees C. Antiserum against the purified enzyme was prepared and the amount of enzyme in the original filtrate was determined by rocket immunoelectrophoresis to be about 50mg/liter. An immunoadsorbent made from CNBr-activated sepharose 4B and antiserum affords a rapid and highly specific purification of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号