首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of a fed-batch cultivation of the fungus Trichoderma reesei (C30) allows cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] production to occur under optimum conditions, and results in extremely high enzyme titres and productivities. Enzyme levels of 26 U ml?1 at productivities >130 U l?1 h?1 have been achieved. These results are compared with the values obtained in two-stage continuous cultivation of the organism at optimum pH and temperature.  相似文献   

2.
Cellulases [see 1,4(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma reesei, Rutgers C30, can be semicontinuously produced in an aqueous two-phase system composed of dextran and poly(ethylene glycol) using Solka Floc BW 200 as substrate. When substrate was intermittently added along with fresh top phase, which replaced the withdrawn top phase containing the produced enzymes, a yield of 1740 U endo-β-d-glucanase/g cellulose and 59.3 FPU/g cellulose was extracted with the top phase. Without fresh substrate added, a yield of 3920 U endo-β-d-glucanase/g cellulose and 127.7 FPU/g cellulose was extracted after five runs.  相似文献   

3.
Summary Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.  相似文献   

4.
The microscopic morphology of Trichoderma reesei QM 9414, growing in submerged culture, was studied by image analysis. The morphology was characterized by the total hyphal length, the total number of tips, the number of actively growing tips, and the length of the main hypha. To describe the growth of a single mycelium a simple model is set-up. The main features of the model are: (1) saturation type kinetics for the tip extension of the individual branches within the mycelium; and (2) random branching with a frequency function, which is proportional to the total hyphal length. The model is used to simulate a population of mycelia, where spore germination is described with a log-normal distribution. From the simulation of the population, the average properties of the mycelia, e.g., the average total hyphal length, are calculated, and by fitting the model to experimental data the model parameters are estimated. Finally, the distribution function with respect to the mycelia properties, that is, number of tips and total hyphal length, is calculated, and it corresponds well with the experimental determination of the distribution function. (c) 1995 John Wiley & Sons Inc.  相似文献   

5.
Summary A significant increase in the extracellular yield of -glucosidase was observed when Trichoderma reesei QM 9414 was cultivated on a cellulose medium containing chitin. Measurement of enzyme activities in the various fractions of the mycelium revealed that endoglucanase was truly extracellular while -glucosidase was cell wall bound. Treatment of Trichoderma mycelium with cell wall degrading enzymes (produced from Trichoderma) led to a release of -glucosidase from the mycelium. Apparently chitin, in the presence of cellulose, induces the synthesis of chitinase and other cell wall lytic enzymes which promote release of the intramural -glucosidase into the medium.  相似文献   

6.
7.
In order to convert cellulosic material to ethanol by single step process a chemofusion method has been followed between protoplasts of Trichoderma reesei, QM 9414, and the spheroplasts of Saccharomyces cerevisiae, NCIM 3288, in the author's laboratory. The fusion was a success and it was observed that endoglucanase was the key enzyme in the success of the fusion. In the present study, characterization of the fusants based on the endoglucanase synthesis, its localization and the distribution in the cells are described and compared with that of Trichoderma reesei, QM 9414, (wild type).  相似文献   

8.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting凝胶色谱脱盐、Source 15 Q阴离子交换色谱技术,里氏木霉(Rut C-30)纤维素酶主要组分得以初步分开,再经过Source 15 S阳离子交换色谱、HiPrep Sephacryl S-100 HR凝胶过滤色谱、Superdex 75 PrepGrade凝胶过滤色谱进一步分离纯化,得到2个纯化的内切葡聚糖酶组分EGⅡ、EGⅠ和一个外切葡聚糖酶组分CBHⅠ;经过SDS-PAGE电泳鉴定为电泳纯,测得相对分子质量分别为5.22×104,5.62×104和6.90×104。EGⅡ的最适反应pH是5.6,最适反应温度为65℃;EGⅠ的最适反应pH是4.4,最适反应温度为55℃;以羧甲基纤维素(CMC)为底物时,EGⅠ、EGⅡ的米氏常数(Km)分别为2.20 mg/mL、3.38 mg/mL。CBHⅠ的最适反应pH是5.8,最适反应温度为60℃,以对硝基苯基-β-D-纤维二糖苷(PNPC)为底物时,米氏常数(Km)为0.12 mg/mL。  相似文献   

9.
A correlation between intracellular phospholipid levels and the rate of exoprotein synthesis was investigated in the filamentous fungus Trichoderma reesei QM 9414 during growth on cellulose. When the incubation temperature was varied between 20 and 37°C, the exoprotein synthesis rate correlated with the total cellular amount of phospholipids, but not with an individual phospholipid component. In contrast, when phospholipid bases were added exogenuously, a significant stimulation of exoprotein synthesis was observed with choline. The addition of the surfactant Tween 80—which also stimulates exoprotein secretion in T. reesei QM 9414—prevented choline stimulation. Optimal stimulation occurred around 20 mM choline. Choline stimulated exoprotein synthesis in general as shown by increased activities of several extracellular enzymes. Mycelia required preincubation for at least 20 h before stimulation of choline could be seen. Mycelia pregrown in the absence or presence of choline were equally effective in formation of -glucosidase upon induction with methyl--d-glucoside, and the addition of choline to the induction medium had no effect. Choline did not alter the osmotic stability of protoplasts of T. reesei. Electron microscopic examinations and analysis of chemical constituents as well as marker enzymes from choline grown and non-choline grown mycelia revealed higher contents of mitochondria and endoplasmic reticula in choline grown mycelia. The possibility is discussed that choline may stimulate exoprotein synthesis by increasing the cellular content of endoplasmic reticula.  相似文献   

10.
里氏木霉Trichoderma reesei Rut-C30是目前研究最广泛的纤维素酶生产菌,选育高产纤维素酶的里氏木霉菌株有助于提高木质纤维素资源生物炼制的经济性。利用人工锌指蛋白文库转化T.reeseiRut-C30,筛选获得了两株高产纤维素酶的突变株T. reesei M1和M2,与出发菌株比较,突变株M1和M2滤纸酶活分别提高100%和53%,且M1突变株外泌蛋白量提高69%,M2内切纤维素酶活提高64%。实时定量PCR分析结果表明,与对照菌株相比,突变株M1和M2中主要纤维素酶基因转录均上调,但不同酶基因在两株菌中有不同的变化特征。此外,纤维素酶抑制转录因子基因ace1在两株突变株中都转录下调,而纤维素酶正调控转录因子基因xyr1仅在M1突变株中上调。以上结果表明,不同人工锌指蛋白对纤维素酶活性的影响具有多样性。对这些突变体中人工锌指蛋白靶基因进行深入分析,为进一步深入探究里氏木霉纤维素酶合成调控的机理,以及利用代谢工程选育更高效的产酶菌株提供了基础。  相似文献   

11.
High yielding mutant strain, Trichoderma reesei QM-9414, was employed for the cellulase enzyme production. Enzyme production conditions (pH, inoculum age and concentration, and organic supplements) were optimized. The ability of partially purified enzyme to hydrolyze various regionally abundant lignocellulosic raw materials was studied. Enzymatic hydrolysis conditions (temperature, pH, enzyme and substrate concentrations) were optimized. Temperature 50v°C, pH 4.5, enzyme concentration 40 FPU/g substrate and substrate concentration 2.5% were found to be optimum for the maximum yields of sugars. #-glucosidase supplementation was found to increase both the sugar yield and hydrolysis rate, and shorten the reaction time significantly.  相似文献   

12.
The rate of total extracellular xylanase production in Trichoderma reesei, QM 9414, system was affected by temperature and pH. In vitro studies with xylanase showed different temperature optima for activity in presence and in absence of xylan as substrate. Similar behaviour was observed in the pH studies. A number of temperature and pH optima also suggested the multiple nature of xyalanase.  相似文献   

13.
The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of short-chain oligosaccharides as initial (15-min) hydrolytic products on microcrystalline cellulose; mainly cellobiose or xylobiose as long-term (24-h) hydrolysis products of Avicel and MN300 or xylan; and high activity and stability at 60 to 70°C. Under optimized reaction conditions, the kinetic properties (Vmax, 0.4 μmol/min per mg of protein; energy of activation, 33 kJ; temperature coefficient, 1.8) of C. thermocellum cellulose-solubilizing activity were comparable to those reported for T. reesei, except that the dyed Avicel concentration at half-maximal velocity was twofold higher (182 μM). The cellulose-solubilizing activity of the two crude cellulases differed considerably in response to various enzyme inhibitors. Most notably, Ag2+ and Hg2+ effectively inhibited C. thermocellum but not T. reesei cellulase at <20 μM, whereas Ca2+, Mg2+, and Mn2+ inhibited T. reesei but not C. thermocellum cellulase at >10 mM. Both enzymes were inhibited by Cu2+ (>20 mM), Zn2+ (>1.0 mM), and ethylene glycol-bis(β-aminoethyl ether)- N,N-tetraacetic acid (>10 mM). T. reesei but not C. thermocellum cellulose-solubilizing activity was 20% inhibited by glucose (73 mM) and cellobiose (29 mM). Both cellulases preferentially cleaved the internal glycosidic bonds of cellooligosaccharides. The overall rates of cellooligosaccharide degradation were higher for T. reesei than for C. thermocellum cellulase, except that the rates of conversion of cellohexaose to cellotriose were equivalent.  相似文献   

14.
Xylanase III (Xyn III), a specific endoxylanase that belongs to family 10 of the glycoside hydrolases, was overexpressed in Trichoderma reesei QM9414 using a constitutive strong promoter of the gene encoding pyruvate decarboxylase (pdc). The maximum recombinant xylanase activity achieved was 817.2?±?65.2 U/mL in the transformant fermentation liquid. The productivities of Xyn III accounted for approximately 53 % of the total protein secreted by the recombinant. The enzyme was optimally active at 60 °C and pH 6. The recombinant Xyn III was stable at pH 5–8. This is the first report on the homologous expression of xyn3 in T. reesei QM9414. The properties of Xyn III make it promising in a variety of industrial use.  相似文献   

15.
Summary The secretion of multiple forms of cellulolytic enzymes by a Trichoderma reesei QM 9414 selectant exhibiting high protease activity (T. reesei QM 9414/A 30) was investigated using monoclonal, domain-specific antibodies against cellobiohydrolase (CBH) I, CBH II and -glucosidase, and a polyclonal antibody against endoglucanase I. The pattern of appearance of these proteins was followed during growth of the fungus on Avicel cellulose, using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western blotting/immunostaining. Evidence was obtained that, at late cultivation stages, CBH I and II became partially modified to lower molecular weight components, whereas -glucosidase and endoglucanase I appeared to remain largely intact. Modification of CBH I appeared to commence from the carboxy-terminal AB region, whereas CBH II appeared to become modified both from the amino- (ABB') and the carboxy-terminal. Evidence for a protease activity that modifies the already truncated cellobiohydrolases in the culture filtrate was obtained. These results show that proteolysis at late culture stages may contribute to the multiplicity of cellulases found in T. reesei culture fluids. Initial proteolytic cleavage of CBH I and II may, however, involve an unusual protease not detectable by the azocasein method.Offprint requests to: C. P. Kubicek  相似文献   

16.
Trichoderma reesei QM 9414 was grown in batch fermentation on wheat straw pretreated by different methods as the sole carbon source. Cellulase production was maximal with NaOH treated wheat straw at a concentration of 10 g/l and an initial pH of 5.5. The addition of fresh straw produced an elongation of the exponential phase or the beginning of a new exponential phase when the additions were carried out at 50 and 120 h, respectively. Filter paper and carboxymethylcellulase activities decreased as an answer to the addition of wheat straw and the levels were regained at the end of fermentation. The decreases of activities were accompanied by the increases of soluble sugar levels, which decreased at the end of fermentation. β-glucosidase activity was stimulated by wheat straw addition at 50 h while not by addition at 120 h; however, at the end of the fermentation the levels of activities were both similar to control. The studies of pH stabilities of these enzymes allow assurance that the effect of the addition of wheat straw on the enzyme activities is not produced by the changes of the pH during the fermentation.  相似文献   

17.
The scope in improving enzyme productivities from the cellulose fermentation process is examined in laboratory-scale fermentors. The maximum productivity (30 IU/liter hr) is attained in a continuous-culture process with cell recycle using modified medium containing 0.5% cellulose. Optimum dilution rate and recycle ratio are determined as 0.025 hr-1 and 1.2, respectively, for the process. The system is analyzed and steady-state equations for predicting enzyme protein concentrations in the fermentor are developed. In fed-batch cultures, slow addition of cellulose at high concentrations can improve enzyme productivity by as much as 33% over a batch process. The scope and results of using modified medium for cellulase production are also presented.  相似文献   

18.
By combining anion-exchange chromatography with gel filtration, an effective method for purification of wild-type xyloglucanase and five other cellulolytic enzymes from strain QM9414 of Trichoderma reesei was established. Characterization by enzyme activity assay, SDS-PAGE, and mass spectrometry identified the purified proteins as cellobiohydrolases I and II, endoglucanases I and II, a xyloglucanase, and β-xylosidase, of which the xyloglucanase was purified for the first time from the mutant strain QM9414. This method holds great promise to study the mechanism of cellulolytic enzymes, to investigate the synergistic action between cellulase and other cellulolytic enzymes, and to better exploit enzyme preparations for degradation of lignocellulose.  相似文献   

19.
Cellulase reaction mechanism was investigated with the use of following pure cellulosic substrates: Microcrystalline cellulose (Avicel), α‐cellulose (Sigma), filter paper, cotton, and non‐crystalline cellulose (NCC). NCC is amorphous cellulose prepared in our laboratory by treatment with concentrated sulfuric acid. When hydrolyzed with cellulase, NCC produces significant amount of cello‐oligosaccharides (COS) as reaction intermediates along with glucose and cellobiose. The COS produced by cellulase were categorized into two different moieties based upon their degree of polymerization (DP): low DP (less than 7) COS (LD‐COS) and high DP COS (HD‐COS). Endo‐glucanase (Endo‐G) reacts rapidly on the NCC reducing its DP to 30–60, after which the Endo‐G reaction with NCC ceases. HD‐COS is produced from NCC by the action of Endo‐G, whereas LD‐COS is produced by exo‐glucanase (Exo‐G). β‐Glucosidase (β‐G) hydrolyzes LD‐COS to produce cellobiose, but it does not hydrolyze HD‐COS. DP of NCC affects the action of Exo‐G in such a way that the overall yield is high for high DP NCC. This is in line with previous findings that substrate‐recognition by Exo‐G requires binding on β‐glucan chain with DP of 10 for the hydrolysis to take place. The individual cellulose chain residues within solid having DP less than 10 therefore remain unreacted. The percentage of the unreacted portion would be lower for high DP NCC, which results high overall conversion. The surface area and the number of reactive sites on the substrate facilitate adsorption of enzyme therefore the initial rate of the hydrolysis. The overall extent of conversion of cellulose, however, is controlled primarily by its inherent characteristics such as DP and crystallinity. Biotechnol. Bioeng. 2009;102: 1570–1581. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Summary Nearly all of the filter paper, endoglucanase and -glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50°C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50–60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号