首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waste sugar beet pulp has been used as adsorbent for the removal of a hazardous cationic dye, Basic violet 16, from its aqueous solution. Adsorption of the dye was studied as function of time, pH of the solution, dosage of the adsorbent, sieve size of the particles, concentration of the dye, and temperature. The initial pH of the dye solution did not affect the chemistry of the dye molecule and the surface of beet pulp. Langmuir and Freundlich adsorption isotherms were successfully employed, and on the basis of these models, the thermodynamic parameters were evaluated. Adsorption of Basic violet 16 on beet pulp was found to be an exothermic reaction. Time contact studies showed that more than 80% adsorption of the dye is achieved in less than 1 h. Kinetics investigations confirmed both pseudo-first-order and pseudo-second-order behaviors; on the other hand, it shows that the intraparticle diffusion step is not the only rate-controlling step in all concentrations.  相似文献   

2.
Adsorption kinetic and equilibrium of a basic dye (Astrazon Yellow 7GL) from aqueous solutions at various initial dye concentration (50-300 mg/l), pH (4-10), adsorbent dosage (2-8 g/l), particle size (354-846 microm) and temperature (30-50 degrees C) on wheat bran were studied in a batch mode operation. The result showed that the amount adsorbed of the dye increased with increasing initial dye concentration and contact time, whereas particle size and pH had no significant affect on the amount of dye adsorbed by the adsorbent. A comparison of kinetic models on the overall adsorption rate showed that dye/adsorbent system was best described by the pseudo second-order rate model. The removal rate was also dependent on both external mass transfer and intra-particle diffusion. The low value of the intraparticle diffusivity, 10(-11) cm2/s, indicated the significant influence of intraparticle diffusion on the kinetic control. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 69.06 mg/g for at pH 5.6, 303 K for the particle size of 354 microm. The experimental data yielded excellent fits with Langmuir and Tempkin isotherm equations. Different thermodynamic parameters showed that the reaction was spontaneous and endothermic in nature.  相似文献   

3.
Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.  相似文献   

4.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

5.
Poly(gamma-glutamic acid) (gamma-PGA), an extracellular polymeric substance (EPS) synthesized by Bacillus species, was explored to study its interaction with the basic brown 1 dye by conducting a systematic batch adsorption study as affected by two critical parameters, temperature and pH. Adsorption isotherms were closely predicted by Temkin equation among the eight isotherm models tested. The rate of adsorption was very rapid attaining equilibrium within 60 min and the kinetics were well described by both modified second-order and pseudo second-order models. Boyd's ion exchange model, which assumes exchanges of ions to be a chemical phenomenon, also fitted the kinetic data precisely. The adsorption rate increased with increasing solution temperature, however, a reversed trend was observed for the adsorption capacity. Changes in enthalpy, entropy and free energy values revealed dye adsorption by gamma-PGA to be an exothermic and spontaneous process involving no structural modification in gamma-PGA, whereas the activation energy of 37.21 kJ/mol indicated dye adsorption to be reaction-controlled. Following a rise in solution pH, the dye adsorption increased and reached a plateau at pH 5, while the maximum release of dye from spent gamma-PGA occurred at pH 1.5, suggesting a possible ion exchange mechanism. Ion exchange adsorption of basic dyes by gamma-PGA was further proved by the presence of two new IR bands at approximately 1600 and 1405.72 cm(-1), representing asymmetric and symmetric stretching vibration of carboxylate anion, for dye-treated gamma-PGA.  相似文献   

6.
Aerated and rotated mode adsorption experiments were carried out for the removal of Congo red from aqueous solution using native and pre-treated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters like contact time, dosage of adsorbent, adsorbate concentration and pH on adsorption was investigated. Higher the dye concentration lower was the adsorption. Equilibrium time was attained at 90 min. Increase in biomass dosage increased the adsorption. Experimental data were analyzed by the Langmuir and Temkin isotherms. Adsorption capacity (Q(0)) of autoclaved biomass was 51.81 mg/g, which was higher than other biomass studied. The second order kinetic model by Ho and Mckay described well the experimental data. Acidic pH was favorable for the adsorption of Congo red. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. Among the native and pre-treated biomass studied, autoclaved biomass showed a better adsorption capacity. Utilization of autoclaved biomass is much safer as it does not pose any threat to environment. Aerated mode showed a better adsorption capacity when compared to rotated mode.  相似文献   

7.
This article describes the use of a cationized starch-based material as new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 (AB 25) from aqueous solutions. Batch adsorption studies concerning the effects of contact time, pH and temperature are presented and discussed. Adsorption experimental data showed that: (i) the process was uniform and rapid: adsorption of dye reached equilibrium in 50 min in the wide pH range of dye solutions; (ii) adsorption kinetics followed the pseudo-second order model; (iii) the Langmuir model yielded a much better fit than the Freundlich model for the dye concentration range under study; (iv) this adsorbent exhibited interesting adsorption capacities: on the basis of the Langmuir analysis, the maximum adsorption capacity was determined to be 322 mg of dye per gram of material at 25 degrees C; (v) the adsorption capacity decreased with increasing temperature; and (vi) the negative value of free energy change indicated the spontaneous nature of adsorption.  相似文献   

8.
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.  相似文献   

9.
In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).  相似文献   

10.
A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.  相似文献   

11.
Adsorption characteristics of native and cross-linked lysozyme crystals were examined using fluorescein as model adsorbate. The adsorption isotherms exhibited Langmuir or linear behavior. The affinity constant (b1) and the adsorption capacity (Qsat) for fluorescein were found to depend on the type and concentration of co-solute present in the solution. The dynamics of adsorption isotherm transition from Langmuir to linear showed that affinity of lysozyme for solutes increases in the order 2-(cyclohexylamino)ethanesulphonic acid (CHES), 4-morpholinepropanesulphonic acid (MOPS), acetate, fluorescein. Furthermore, the crystal morphology, the degree of cross-linking of the crystals, and, in particular, solution pH were identified as factors determining fluorescein adsorption by the lysozyme crystals. These factors seem to affect crystal capacity for the solute more than affinity for the solute. Adsorption of fluorescein by cross-linked tetragonal lysozyme crystals was exponentially dependent on the lysozyme net charge calculated from the final solution pH. The 3-5-fold increase in the fluorescein adsorption as a result of cross-linking is presumably due to the increasing hydrophobicity of the lysozyme crystal.  相似文献   

12.
Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.  相似文献   

13.
A barley straw was modified by a surfactant, cetylpyridinium chloride, and used as an adsorbent for acid (acid blue 40) and reactive dye (reactive black 5) adsorption in aqueous solution. Characterization of the modified barley straw was performed using N2 adsorption, titration, and FT-IR analysis. It was found that the surfactant modified barley straw exhibits higher adsorption to acid blue 40 than reactive black 5 and adsorption of the dyes is influenced by several parameters such as dye initial concentration, adsorbent dosage, solution pH, and adsorption temperature. Adsorption isotherms show that maximum adsorption of acid blue 40 and reactive black 5 is 1.02 × 10−4 and 2.54 × 10−5 mol/g, respectively. Desorption studies show that both dyes are strongly bounded with the adsorbent and exhibit low desorption.  相似文献   

14.
The removal of color from aquatic systems caused by presence of synthetic dyes is extremely important from the environmental viewpoint because most of these dyes are toxic, mutagenic and carcinogenic. In this present study, the yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Degener) peel a powdered solid waste, was tested as an alternative low-cost adsorbent for the removal of a basic dye, methylene blue (MB), from aqueous solutions. Adsorption of MB onto this natural adsorbent was studied by batch adsorption isotherms at room temperature. The effects of shaking time and pH on adsorption capacity were studied. An alkaline pH was favorable for the adsorption of MB. The contact time required to obtain the maximum adsorption was 56 h at 25 degrees C. Yellow passion fruit peel may be used as an alternative adsorbent to remove MB from aqueous solutions.  相似文献   

15.
A nondestructive method of measuring extracellular polysaccharides (ECP) in activated sludge floes using Ruthenium Red dye adsorption was developed at the Environmental Engineering Laboratory at the University of Colorado at Boulder. The effects of pH, buffer solution, dye concentration, sludge mass, temperature, and incubation time on dye adsorption was determined. Ruthenium Red dye adsorption to bacterial floes was found to fit a Brunauer-Emmett-Teller (BET) isotherm model. Of the other environmental conditions in the system, pH was found to have the strongest effect on dye adsorption to bacterial flocs. The amount of extra cellular polysaccharides (ECP) measured by Ruthenium Red adsorption was compared with extracellular polysaccharides measured by two chemical extraction methods. Of all methods considered Ruthenium Red dye adsorption measured the highest amount of extracellular polysaccharide with the lowest amount of bacterial cell disruption. Thus, Ruthenium Red dye adsorption was more effective than extraction procedures for measurement of extracellular polysaccharides in activated sludge flocs.  相似文献   

16.
Adsorption studies were conducted to study the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution on palm pith carbon under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Higher 2,4-DCP was removed with decrease in the initial concentration of 2,4-DCP and increase in amount of adsorbent used. Kinetic study showed that the adsorption of 2,4-DCP on palm pith carbon was a gradual process. Adsorption capacities were 19.16 mg/g for the particle size of 250-500 microm. The equilibrium time was 60 and 80 min for 10 and 20 mg/L and 100 min for both 30 and 40 mg/L phenol concentrations, respectively. Acidic pH was favourable for the adsorption of 2,4-DCP. Studies on pH effect and desorption showed that chemisorption seemed to play a major role in the adsorption process. Thermodynamic study showed that adsorption of 2,4-DCP on palm pith carbon was more favoured. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of palm pith carbon was estimated as 30.72 J/mol/k and 7.16 kJ/mol, respectively. The high positive value of change in Gibbs free energy indicated the feasible and spontaneous adsorption of 2,4-DCP on palm pith carbon. The results indicated that palm pith carbon was an attractive candidate for removing phenols from wastewater.  相似文献   

17.
Potential of spent biomass of a cyanobacterium, Nostoc linckia HA 46, from a hydrogen bioreactor was studied for biosorption of a textile dye, reactive red 198. The waste biomass was immobilized in calcium alginate and used for biosorption of the dye from aqueous solution using response surface methodology (RSM). Kinetics of the dye in aqueous solution was studied in batch mode. Interactive effects of initial dye concentration (100-500 mg/L), pH (2-6) and temperature (25-45 °C) on dye removal were examined using Box-Behnken design. Maximum adsorption capacity of the immobilized biomass was 93.5 mg/g at pH 2.0, initial concentration of 100 mg/L and 35 °C temperature, when 94% of the dye was removed. Fourier transform infrared (FT-IR) studies revealed that biosorption was mainly mediated by functional groups like hydroxyl, amide, carboxylate, methyl and methylene groups present on the cell surface.  相似文献   

18.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   

19.
This paper describes modification of a natural adsorbent with Fenton reagent and determines the removal of Cd(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR analysis after the modification of pine bark. The effect of Fe2+/H2O2 ratio, ORP, pH, and contact time were determined. Different adsorption isotherms were also obtained using concentrations of Cd(II) ions ranging from 0.1 to 100 mg L(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The paper discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) on modified bark, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiency obtained was 97% at pH 7 and with a 90-min contact time (for 35 mg L(-1) initial concentration and a 2.5 g L(-1) solid-to-liquid ratio).  相似文献   

20.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号