首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

2.
SYNOPSIS. The growth and reproduction of Allogromia laticollaris was studied. More schizozoites were generally produced in mixtures of food organisms than on single algal foods. In the presence of moderate numbers of bacteria, cultures with Phaeodactylum tricornutum, Chlorococcum sp., Nannochloris sp., and an unidentified chlorophyte (BL-1), added singly, were also highly productive. Schizogony was the dominant asexual form of reproduction. Binary fission and cytotomy also occurred in bacterized otherwise unfed controls. 35S and 32P are convenient labels for measuring growth of A. laticollaris when introduced into the system in the range of 1 × 104 - 1 × 105 dpm/ml (32P specific activity ~ 2.03 MCi/g; 35S specific activity ~ 95 μCi/g). Small allogromiids grew faster than did larger ones. By means of the Taylor series modification of the classical least-squares method, a continuous life-cycle representation was calculated for A. laticollaris for the conditions of the experiment. Four points of cell volume growth were maxima for reproduction: 1.0 × 107μ per organism for curve I; 2.2 × 107μ3 and 1.2 × 107μ3 for curve II; and 6.7 × 107μ3 for curve III.  相似文献   

3.
Variation in crop growth is an important limiting factor for groundnut production in Niger. Populations of Aphelenchoides sp., Ditylenchus sp., Helicotylenchus sp., Hoplolaimus pararobustus, Macroposthonia curvata, Paralongidorus bullatus, Scutellonema clathricaudatum, Telotylenchus indicus and Xiphinema parasetariae have been associated with groundnut crop growth variability. S. clathricaudatum, X. parasetariae and T. indicus were widespread and S. clathricaudatum was most abundant nematode. Population densities of S. clathricaudatum was always higher in the roots of poorly growing, chlorotic and stunted plants than in the roots of apparently healthy plants. A preplant population density of 1.3 S. clathricaudatum cm-3 soil caused (p=0.05) reduction in plant growth of groundnut cv. 55–437. S. clathricaudatum was mainly confined to 0–15 cm soil depth at the time of planting in June and was not found below 45 cm depth at any time during the crop growth period. Soil application of carbofuran (10 kg a.i ha-1) reduced the nematode population densities and resulted in vigorous and uniform crop growth. Higher Al and H-ion concentrations (0.50 meq 100 g-1 soil) also was associated with poorly growing chlorotic seedlings. Symptoms of nematode-caused variable growth were evident 3 to 4 weeks after seedling emergence.Submitted as ICRISAT Journal Article No. 1141.  相似文献   

4.
Cadmium inhibition of microorganisms was found to be bacterial and chemical species dependent. E. coli inhibition was a function of the cadmium-ion concentration irregardless of the presence of citrate, a chelator for cadmium that it could not metabolize. Whereas with a Pseudomonas sp. able to metabolize citrate, cadmium inhibition was a function of both the cadmium ion and the presence of citrate. With no citrate, inhibition of this organism occurred only at relatively high cadmium-ion concentrations (above 10–4 m); when citrate was added to the same cadmium-containing growth medium, inhibition was observed at a 1000 times lower cadmium-ion concentration (i.e., 10–7 m). This observation is contrary to the classical understanding where a chelate reduces the toxic form of a metal allowing increased growth of the organism.The species of cadmium also differentially inhibited the Douglas fir litter respiration and nitrogen-fixing community activities.  相似文献   

5.
Geobacillus, a bacterial genus, is represented by over 25 species of Gram-positive isolates from various man-made and natural thermophilic areas around the world. An isolate of this genus (M-7) has been acquired from a thermal area near Yellowstone National Park, MT and partially characterized. The cells of this organism are globose (ca. 0.5 μ diameter), and they are covered in a matrix capsule which gives rise to elongate multicelled bacilliform structures (ranging from 3 to 12 μm) as seen by light and atomic force microscopy, respectively. The organism produces unique petal-shaped colonies (undulating margins) on nutrient agar, and it has an optimum pH of 7.0 and an optimum temperature range of 55–65°C. The partial 16S rRNA sequence of this organism has 97% similarity with Geobacillus stearothermophilus, one of its closest relatives genetically. However, uniquely among all members of this genus, Geobacillus sp. (M-7) produces volatile organic substances (VOCs) that possess potent antibiotic activities. Some of the more notable components of the VOCs are benzaldehyde, acetic acid, butanal, 3-methyl-butanoic acid, 2-methyl-butanoic acid, propanoic acid, 2-methyl-, and benzeneacetaldehyde. An exposure of test organisms such as Aspergillus fumigatus, Botrytis cinerea, Verticillium dahliae, and Geotrichum candidum produced total inhibition of growth on a 48-h exposure to Geobacillus sp.(M-7) cells (ca.107) and killing at a 72-h exposure at higher bacterial cell concentrations. A synthetic mixture of those available volatile compounds, at the ratios occurring in Geobacillus sp. (M-7), mimicked the bioactivity of this organism.  相似文献   

6.

Two chromium-resistant bacterial strains, Bacillus cereus S-6 and Ochrobactrum intermedium CrT-1, and two cyanobacterial strains, Oscillatoria sp. and Synechocystis sp., were used in this study. At initial chromate concentrations of 300 and 600 μg K2CrO4 mL−1, and an inoculum size of 9.6×107 cells mL−1, B. cereus S-6 completely reduced Cr(VI), while O. intermedium CrT-1 reduced Cr(VI) by 98% and 70%, respectively after 96 h. At 100 μg K2CrO4 mL−1, Synechocystis sp. MK(S) and Oscillatoria sp. BJ2 reduced 62.1% and 39.9% of Cr(VI), respectively, at 30°C and pH 8. Application of hexavalent chromate salts adversely affected wheat seedling growth and anatomical characters. However, bacterial inoculation alleviated the toxic effects, as reflected by significant improvements in growth as well as anatomical parameters. Cyanobacterial strains also led to some enhancement of various growth parameters in wheat seedlings.

  相似文献   

7.
It was shown that 3-amino-3-deoxy-D-glucose, one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., inhibits the bacterial synthesis of cell wall. The antibiotic (100 μg/ml) significantly inhibits the growth of Straphylococcis aureus FDA 209P as well as the incorporation of DL-[14C]alanine into the acid-insoluble macromolecular fraction of its growing cells in the presence of chloramphenicol (100 μg/ml). In contrast, the antibiotic doed not affect the incorporation of [3H]thymidine, [3H]uridine and L-[14C]leucine. The other constituents of kanamycin, 6-amino-6-deoxy-D-glucose and deoxystreptamine do not inhibit the synthesis of bacterial cell wall peptidoglycan.  相似文献   

8.
Unicellular microalgae generally grow in the presence of bacteria, particularly when they are farmed massively. This study analyzes the bacteria associated with mass culture of Botryococcus braunii: both the planktonic bacteria in the water column and those forming biofilms adhered to the surface of the microalgal cells (∼107–108 culturable cells per gram microalgae). Furthermore, we identified the culturable bacteria forming a biofilm in the microalgal cells by 16S rDNA sequencing. At least eight different culturable species of bacteria were detected in the biofilm and were evaluated for the presence of quorum-sensing signals in these bacteria. Few studies have considered the implications of this phenomenon as regards the interaction between bacteria and microalgae. Production of C4-AHL and C6-AHL were detected in two species, Pseudomonas sp. and Rhizobium sp., which are present in the bacterial biofilm associated with B. braunii. This type of signal was not detected in the planktonic bacteria isolated from the water. We also noted that the bacterium, Rhizobium sp., acted as a probiotic bacterium and significantly encouraged the growth of B. braunii. A direct application of these beneficial bacteria associated with B. braunii could be, to use them like inoculants for large-scale microalgal cultures. They could optimize biomass production by enhancing growth, particularly in this microalga that has a low growth rate.  相似文献   

9.
A survey of endophytic bacteria colonizing roots of processing carrots (Daucus carota) was performed with two high-yielding cultivars (Carochoice, Red Core Chantenay) grown at two locations (Canning, Great Village) in Nova Scotia. Most bacterial endophyte colony-forming units (CFU) were recovered from the carrot crown tissues (96%) compared to the periderm and metaxylem tissues of carrot storage tissues irrespective of the cultivars and field locations. Greater population densities of endophytic bacteria were recovered from the crowns of Red Core Chantenay (5.75 × 105 CFU/g FW in Great Village; 3.0 × 105 CFU/g FW in Canning) cultivar, which accounted for 78% of all of CFU recovered compared to cv. Carochoice. Independent of the cultivars, more endophytes were recovered from the carrots produced in Great Village compared to the ones grown in Canning (62 vs. 38%, respectively). Of 360 isolates examined, 28 bacterial genera were identified, of which, Pseudomonas, Staphylococcus, and Agrobacterium were the most common (31, 7 and 7%, respectively). Diversity indices showed no significant differences between the two locations. A bioassay using selected strains of bacteria was performed on 4 week-old carrot (cv. Bergen) and potato (Solanum tuberosum cv. Atlantic) plantlets. In carrots, 83% of the bacterial strains tested were found to be plant growth promoting, 10% remained plant growth neutral and 7% inhibited plant growth. In contrast, in the potato bioassay 38% remained growth neutral, 33% promoted and 29% inhibited plant growth.  相似文献   

10.
Soil and sediment samples obtained from Orange MR dye contaminated habitat were screened for heterotrophic bacterial population. The heterotrophic bacterial density of dye-contaminated soil was 2.14 × 106 CFU/g. The generic composition of heterotrophic bacterial population was primarily composed of 10% of Proteus sp., 15% Aeromonas sp., 20% Bacillus sp., 25% Pseudomonas sp. and 30% Micrococcus sp. The bacterial strain that decolorized the azo dye Orange MR up to 900 ppm was identified as Micrococcus sp. The optimum inoculum load, pH and temperature were found to be 5%, 6 and 35°C, respectively. The rate of decolorization was assessed using spectrophotometer at 530 nm and the percentage of decolorization was ascertained. The autochthonous bacterial isolate was able to utilize the dye as both nitrogen and carbon source.  相似文献   

11.
All physico-chemical parameters that affect bacterial growth rate will also affect bacterial molecular composition, which in turn influences the chemical composition of bacterial lysate and its turnover rate in the ecosystem. To produce qualitatively different lysates, Vibrio sp. cells were grown under different pH, salt, or temperature conditions in rich growth media and then washed and lysed by autoclaving. Both the absolute concentrations and the ratios between elements in the lysates varied with different growth conditions, implying differences in lysate quality. Either Pseudoalteromonas sp. or Vibrio sp. was grown on the lysates at non-limiting lysate concentrations. Different lysates supported growth rates of Pseudoalteromonas sp. in the range from 0.25 to 1.53 h−1. On the other hand, growth rates of Vibrio sp. grown on its own lysates were around 0.4 h−1 and were not dependent on lysate quality. Two orders of magnitude decrease in Zn concentration in Vibrio sp. cells grown on different lysates as compared to cells grown on rich growth medium suggested that Zn might be a factor limiting growth. In the simple microbial loop studied, the initial difference in lysate quality was preserved in Pseudoalteromonas sp., whereas Vibrio sp. decreased the initial differences in lysate quality, thereby neutralizing the primary effect of environmental conditions on carbon turnover.  相似文献   

12.
The performance of three selected bacterial strains—PR3, PR7 and PR10 (Providencia sp., Brevundimonas sp., Ochrobacterium sp.) and three cyanobacterial strains CR1, CR2 and CR3 (Anabaena sp., Calothrix sp., Anabaena sp.), and their combinations was evaluated in a pot experiment with rice variety Pusa-1460, comprising 51 treatments along with recommended fertilizer controls. Highest yield enhancement of 19.02% was recorded in T12 (CR2), over control, while significant enhancement in nitrogen fixing potential was recorded in treatments involving combination of bacterial-cyanobacterial strains—T37 (PR3 + CR1 + CR3) and T21 (PR7 + CR1). Organic carbon was significantly increased in all microbe-inoculated treatments, which could be correlated with microbial biomass carbon values and activities of all the enzymes tested in our study. Also, panicle weight and plant biomass were highly correlated with soil microbial carbon. Comparative evaluation revealed the superior performance of strains CR2, CR1 (both Anabaena sp.) and PR10 (Ochrobacterium sp.) in increasing the growth and grain yield of rice and improving soil health, besides N (nitrogen) savings of 40–80 kg ha−1. The study for the first time illustrated the positive effects of co-inoculation of bacterial and cyanobacterial strains for integrated nutrient management of rice crop.  相似文献   

13.
One pyrene-degrading endophytic bacterium was isolated from plants grown in polycyclic aromatic hydrocarbon-contaminated soils and identified as Enterobacter sp. 12J1 based on the 16S rDNA gene sequence analysis. Heavy metal and antibiotic resistance, degradation of pyrene, solubilization of inorganic phosphate and cell surface hydrophobicity characteristics of the isolate were further characterized. The isolate was also evaluated for promoting plant growth of wheat and maize and pyrene removal from pyrene-amended soil in pot experiments. High-performance liquid chromatograph (HPLC) analysis showed that the degradation rate of pyrene (5 mg l−1) by the endophytic bacterial strain 12J1 was 83.8% under 28 °C for 7 days. The Enterobacter sp. 12J1 could produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate. The Enterobacter sp. 12J1 also has a cell surface hydrophobicity. In the live bacterial inoculation experiment, an increase in pyrene removal varying from 60% to 107% was observed in the planted soils treated with 100 mg kg−1 of pyrene compared with the unplanted soils. The rate of pyrene removal increased by 43–65% in the live bacterium-inoculated planted soils compared with the dead bacterium-inoculated planted soils. Although there were no significant differences in the total culturable bacterial numbers between live and dead bacterial inoculation, the numbers of pyrene-degrading bacteria were significantly greater in the live bacterium-inoculated planted or unplanted soils. The isolate could colonize the tissue (root and stem) interiors and rhizosphere soils of wheat and maize after root inoculation.  相似文献   

14.
Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock1. Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours2, 4. The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes5. Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h.Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods6. This assay was based on a study in which PCR was used to measure the growth of bacteria7. Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.  相似文献   

15.
To determine whether bacteria isolated from within plant tissue can have plant growth-promotion potential and provide biological control against soilborne diseases, seeds and young plants of oilseed rape (Brassica napus L. cv. Casino) and tomato (Lycopersicon lycopersicum L. cv. Dansk export) were inoculated with individual bacterial isolates or mixtures of bacteria that originated from symptomless oilseed rape, wild and cultivated. They were isolated after surface sterilization of living roots and stems. The effects of these isolates on plant growth and soilborne diseases for oilseed rape and tomato were evaluated in greenhouse experiments. We found isolates that not only significantly improved seed germination, seedling length, and plant growth of oilseed rape and tomato but also, when used for seed treatment, significantly reduced disease symptoms caused by their vascular wilt pathogens Verticillium dahliae Kleb and Fusarium oxysporum f. sp. lycopersici (Sacc.), respectively.  相似文献   

16.
Quantitative and qualitative studies of the bacterial flora of farmed freshwater prawn (Macrobrachium rosenbergii) larvae in Saudi Arabia were performed, and isolates identified where possible. Physico‐chemical characteristics, bacterial counts, and the nature of the bacterial flora of larvae rearing tank water, sediment, tank wall surfaces, larval surface, supplied water, and feed were investigated. Bacterial counts ranged from 2.1 ± 1.3 × 105 to 2.2 ± 0.8 × 107 colony forming units (CFU) ml?1 in tank water; 4.4 ± 0.9 × 107 to 8.3 ± 1.7 ×109 CFU g?1 in tank sediment; 8.6 ± 1.0 × 102 to 9.8 ±0.7 × 104 CFU cm?2 on the tank wall surface; 1.3 ± 1.1 × 104 to 7.7 ± 1.6 × 106 CFU per larva surface, 7.9 ± 1.2 × 105 to 5.0 ± 1.5 × 107 CFU g?1 in washed larval tissue slurries, 9.1 ± 0.7 × 103 CFU ml?1 in supplied water, and 2.4 ± 1.9 ×1010 CFU g?1 in mixed feed. Fourteen bacterial genera were identified, including Chryseomonas sp., Vibrio spp., Cellulomonas sp., Aeromonas hydrophila, and Pasteurella sp. The tank water and sediment had similar bacteria to those on the prawn larvae. Chryseomonas sp., Cellulomonas sp. and Vibrio sp. were the most dominant species (prevalence >10%) in tank water; Chryseomonas sp., Pseudomonas alcaligenes and Shewanella putrefaciens in the sediment; Ps. alcaligenes and Cellulomonas sp. on the tank wall surface; Chryseomonas sp., and Cellulomonas sp. on the larval surface; and Chryseomonas sp., Vibrio vulnificus, Sh. putrefaciens and V. alginolyticus in the washed larval tissue slurries (prevalence 10%). Pseudomonas alcaligenes, Moraxella sp., Serratia liquefaciens, Gordona sp. and Burkholderia glumae were absent in larvae but identified in the culture water, tank sediment, and tank wall surface. Pseudomonas sp., Chryseomonas sp., Pasteurella sp. and V. alginolyticus were the prevalent bacteria (>12%) in supplied water. The feed contained V. alginolyticus, A. hydrophila and Cellulomonas sp. as the dominant bacteria (>13%). In the culture water and larvae samples, 83% of the feed and supplied water bacteria were identified.  相似文献   

17.
Summary Micropropagated grape (Vitis vinifera L.) cv. Arka Neelamani cultures showed a decline in root and shoot growth performance after 6–7 yr of continuous in vitro culture. Indexing the culture medium using nutrient agar or 523 bacteriological medium (Viss et al., 1991) revealed covert bacteria in 75–100% cultures. Testing the tissue from different parts of in vitro plantlets on nutrient agar showed bacteria comprising of six or more morphotypes in 100% of root and collar tissue samples but less frequently in stem segments. The shoot tips had the lowest incidence of bacterial association. The whole shoots treated with NaOCl (4% chlorine) or HgCl2 (0.1%) showed endophytic bacterial survival. Culturing the HgCl2-treated (5 min) shoot tips on antibiotic overlaid medium (1 ml of 50 mg l−1 gentamycin and/or cefazolin) in culture tubes (150×25 mm) for 1 mo. facilitated the cleansing of cultures with 75% recovery of contaminant-free shoots as monitored through indexing for the next 2 yr. Repeated indexing of medium and tissue from various plant parts during the first two to four subculture cycles following antibiotic treatment was instrumental in reliably identifying clean cultures and preventing bacterial re-emergence. Antibiotic incorporation in the medium was detrimental to grape microcuttings. Bacteria-freed cultures showed 80–100% rooting and a high number of plantlets that could be acclimatized. The plants put in the field after 8 yr of active micropropagation showed some juvenile characteristics initially, which disappeared in 6–8 mo., and the pruned shoots showed flowering and bunch development within 1 yr of field planting. This indicated the feasibility of keeping grape plants in vitro for long periods if covert microbes were eliminated.  相似文献   

18.
Lolium perenne cv. S.23, L. multiflorum cv. RvP, and Trifolium repens cvs S.184 and Olwen, were grown in mixed sward and monoculture during 1979. Whereas in mixtures grass roots absorbed more 32P than clover roots, in monoculture clover generally absorbed more 32P than grass roots. This showed that grass was a very strong competitor for uptake in mixed swards. Clover and grass monocultures absorbed most 32P from 10 or 15 cm depth in the soil, while grass in mixtures absorbed most 32P at 22.5 cm depth. Comparing varieties, in monocultures in June, Olwen was most active in absorbing 32P at 15 cm. In August, Olwen absorbed more at 15 cm and 22.5 cm than S.184 or the grass varieties. Differences in absorption depth between varieties were less in mixtures than in monocultures. S.23 absorbed more 32P in the late season than RvP, both in monoculture and in mixtures. Thus Olwen differed from S. 184 in depth and timing of uptake, whilst S.23 differed from RvP in time of uptake. Such varietal differences could be exploited by manipulation of depth and timing of fertiliser application to increase the precision of sward management.  相似文献   

19.
为探索内生真菌与广藿香互作间对宿主活性成分形成机制的影响,该研究以成分差异较大的牌香和湛香为对象,采用传统形态学方法对所获菌株归类,通过真菌通用引物ITS1/ITS4扩增菌株rDNA-ITS序列,鉴定其分类地位并研究其多样性。结果表明:(1)用PDA和LBA培养基对苗期、分枝期和成株期广藿香茎叶组织块进行内生真菌分离,共获得3 070株菌株,其中牌香(PX)分离出1 624株,鉴定出1 319株,分属于36属;湛香(ZX)分离出1 446株,鉴定出994株,分属于33属。牌香分离出7种特有内生真菌,分别为香柱菌(Epichloe typhina)、盘长孢状刺盘孢菌(Colletotrichum gloeosporioides)、座腔孢菌(Botryosphaeria sp.)、丝核菌(Rhizoctonia sp.)及截盘多毛孢菌(Truncatella sp.),并首次分离到疫霉菌(Phytophthora sp.)和指疫霉菌(Sclerophthora sp.),这2种菌属于卵菌门内生菌。湛香分离出拟青霉菌(Paecilomyces sp.)和尾孢菌(Cercospora sp.)...  相似文献   

20.
The abilities of bacteria isolated from eight marine sedentary organisms, six marine sponges (Spirastrella sp., Phyllospongia sp., Ircinia sp., Aaptos sp., Azorica sp. and Axinella sp.), one soft coral (Lobophytum sp.) and one alga (Sargassum sp.) to produce industrial enzymes (amylase, carboxymethylcellulase and protease) were examined. The mean total viable counts of the bacterial isolates ranged from 8.7 × 104 to 8.4 × 105 cfu/g wet weight of the organism. All eight organisms harboured amylase (0.05–0.5 IU/ml), carboxymethylcellulase (0.05–0.5 IU/ml) and protease (0.1–0.5 IU/ml) producing bacteria. Of 56 bacterial strains tested, as many as 60 to 83% of the strains produced at least one of the three enzymes, and 47% of strains were able to produce all three enzymes. High activities (> 0.5 IU/ml) of the three enzymes were recorded in bacterial strains belonging to the genera Alcaligenes and Bacillus. From the results of this study, it appears that bacteria associated with marine sedentary organisms are the novel source of industrial enzymes for possible commercial applications and may play an important role in enzyme‐catalysed organic matter cycling in marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号