首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes.  相似文献   

2.
To identify host proteins involved in Legionella pneumophila intracellular replication, the soil amoeba Dictyostelium discoideum was analysed. The absence of the amoebal RtoA protein is demonstrated here to depress L. pneumophila intracellular growth. Uptake of L. pneumophila into a D. discoideum rtoA(-) strain was marginally defective, but this effect was not sufficient to account for the defective intracellular growth of L. pneumophila. The rtoA mutant was also more resistant to high-multiplicity killing by the bacterium. A targeting assay testing the colocalization of L. pneumophila-containing vacuole with an endoplasmic reticulum/pre-Golgi intermediate compartment marker protein, GFP-HDEL, was used to analyse these defects. In parental D. discoideum, the L. pneumophila vacuole showed recruitment of GFP-HDEL within 40 min after introduction of bacteria to the amoebae. By 6 h after infection it was clear that the rtoA mutant acquired and retained the GFP-HDEL less efficiently than the parental strain, and that the mutant was defective for promoting the physical expansion of the membranous compartment surrounding the bacteria. Depressed intracellular growth of L. pneumophila in a D. discoideum rtoA(-) mutant therefore appeared to result from a lowered efficiency of vesicle trafficking events that are essential for the modification and expansion of the L. pneumophila-containing compartment.  相似文献   

3.
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.  相似文献   

4.
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates within a specific vacuole in amoebae and macrophages. To form these ' Legionella -containing vacuoles' (LCVs), the bacteria employ the Icm/Dot type IV secretion system and effector proteins, some of which anchor to the LCV membrane via the host glycolipid phosphatidylinositol 4-phosphate [PtdIns(4) P ]. Here we analysed the role of inositol polyphosphate 5-phosphatases (IP5Ps) during L. pneumophila infections. Bacterial replication and LCV formation occurred more efficiently in Dictyostelium discoideum amoebae lacking the IP5P Dd5P4, a homologue of human OCRL1 (Oculocerebrorenal syndrome of Lowe), implicated in retrograde endosome to Golgi trafficking. The phenotype was complemented by Dd5P4 but not the catalytically inactive 5-phosphatase. Ectopically expressed Dd5P4 or OCRL1 localized to LCVs in D. discoideum via an N-terminal domain previously not implicated in membrane targeting, and OCRL1 was also identified on LCVs in macrophages. Dd5P4 was catalytically active on LCVs and accumulated on LCVs harbouring wild-type but not Δ icmT mutant L. pneumophila . The N-terminal domain of OCRL1 bound L. pneumophila LpnE, a Sel1-like repeat protein involved in LCV formation, which localizes to LCVs and selectively binds PtdIns(3) P . Our results indicate that OCRL1 restricts intracellular growth of L. pneumophila and binds to LCVs in association with LpnE.  相似文献   

5.
Intracellular pathogens exploit host cell functions to create a replication niche inside eukaryotic cells. The causative agent of Legionnaires' disease, the gamma-proteobacterium Legionella pneumophila, resides and replicates within a modified vacuole of protozoan and mammalian cells. L. pneumophila translocates effector proteins into host cells through the Icm-Dot complex, a specialized type IVB secretion system that is required for intracellular growth. To find out if some effector proteins may have been acquired through interdomain horizontal gene transfer (HGT), we performed a bioinformatic screen that searched for eukaryotic motifs in all open reading frames of the L. pneumophila Philadelphia-1 genome. We found 44 uncharacterized genes with many distinct eukaryotic motifs. Most of these genes contain G+C biases compared to other L. pneumophila genes, supporting the theory that they were acquired through HGT. Furthermore, we found that several of them are expressed and up-regulated in stationary phase in an RpoS-dependent manner. In addition, at least seven of these gene products are translocated into host cells via the Icm-Dot complex, confirming their role in the intracellular environment. Reminiscent of the case with most Icm-Dot substrates, most of the strains containing mutations in these genes grew comparably to the parent strain intracellularly. Our findings suggest that in L. pneumophila, interdomain HGT may have been a major mechanism for the acquisition of determinants of infection.  相似文献   

6.
Leticia Lemus 《Autophagy》2016,12(6):1049-1050
The endoplasmic reticulum (ER) is a major source for the generation of autophagosomes during macroautophagy. Our recent work in yeast shows that particular ER-derived vesicles are generated for the biogenesis of autophagosomes. These vesicles not only incorporate a SNARE protein that is largely ER-resident under nonstarving conditions, but also display COPII requirements for ER-exit that differ from conventional cargo-transporting vesicles. Our results suggest that specific intracellular traffic is launched at the ER for the transport of membranes to sites of autophagosome formation.  相似文献   

7.
Legionella pneumophila is an intracellular pathogen that replicates in a unique vacuole that avoids endocytic maturation. Previous studies have shown host vesicles attached to the L. pneumophila-containing vacuole (LCV) minutes after uptake. Here we examine the origin and content of these vesicles by electron microscopy (EM). Our data demonstrate that the attached vesicles are derived from endoplasmic reticulum (ER) based the presence of the resident ER proteins glucose-6-phosphatase, protein disulphide isomerase (PDI) and proteins having the ER-retention signal lysine-aspartic acid-glutamic acid-leucine (KDEL). After tethering occurred, ER markers inside of attached vesicles were delivered into the lumen of the LCV, indicating ER fusion. Treatment of cells with brefeldin A did not interfere with the attachment of ER vesicles with the LCV, suggesting that tethering of these vesicles does not require activities mediated by ADP-ribosylation factor (ARF). ER vesicles were not tethered to the LCV in cells producing the Sar1H79G protein, indicating that vesicles produced by the Sar1/CopII system are necessary for vesicle attachment. From these data we conclude that formation of the organelle that supports L. pneumophila replication is a two-stage process that involves remodelling of the LCV by early secretory vesicles produced by the Sar1/CopII system, followed by attachment and fusion of ER.  相似文献   

8.
Legionella pneumophila, the Gram-negative bacterium that causes Legionnaires' disease, can be cultured in the laboratory in a variety of fresh-water amoebae and macrophage-like cell lines. None of these hosts, however, is amenable to genetic analysis, which has limited the ability of researchers to analyse the host factors essential for L. pneumophila growth. In this article, we describe a novel method in which L. pneumophila is grown within the soil amoeba Dictyostelium discoideum and how D. discoideum genetics is being used to analyse the host cell factors involved in L. pneumophila pathogenesis.  相似文献   

9.
Legionella pneumophila is the predominant cause of Legionnaires' disease in the USA and Europe in contrast to Legionella longbeachaea, which is the leading cause of the disease in Western Australia. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase along with expression of other virulence traits, such as motility. We show that while motility of L. longbeachaea is triggered upon growth transition into post-exponential phase, its ability to proliferate intracellularly is totally independent of the bacterial growth phase. Within macrophages, L. pneumophila replicates in a phagosome that excludes early and late endocytic markers and is surrounded by the rough endoplasmic reticulum (RER). In contrast, the L. longbeachaea phagosome colocalizes with the early endosomal marker early endosomal antigen 1 (EEA1) and the late endosomal markers lysosomal associated membrane glycoprotein 2 (LAMP-2) and mannose 6-phosphate receptor (M6PR), and is surrounded by the RER. The L. longbeachaea phagosome does not colocalize with the vacuolar ATPase (vATPase) proton pump, and the lysosomal luminal protease Cathepsin D, or the lysosomal tracer Texas red Ovalbumin (TROV). Intracellular proliferation of L. longbeachaea occurs in LAMP-2-positive phagosomes that are remodelled by the RER. Despite their distinct trafficking, both L. longbeachaea and L. pneumophila can replicate in communal phagosomes whose biogenesis is predominantly modulated by L. longbeachaea into LAMP-2-positive phagosomes. In addition, the L. pneumophila dotA mutant is rescued for intracellular replication if it co-inhabits the phagosome with L. longbeachaea. During late stages of infection, L. longbeachaea escape into the cytoplasm, prior to lysis of the macrophage, similar to L. pneumophila. We conclude that the L. longbeachaea phagosome matures to a non-acidified late endosome-like stage that is remodelled by the RER, indicating an idiosyncratic trafficking of L. longbeachaea compared with other intracellular pathogens, and a divergence in its intracellular lifestyle from L. pneumophila. In addition, re-routing biogenesis of the L. pneumophila phagosome into a late endosome controlled by L. longbeachaea has no effect on intracellular replication.  相似文献   

10.
The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila.  相似文献   

11.
The ability of Legionella pneumophila to cause legionnaires' disease is dependent on its capacity to replicate within cells in the alveolar spaces. The bacteria kill mammalian cells in two phases: induction of apoptosis during the early stages of infection, followed by an independent and rapid necrosis during later stages of the infection, mediated by a pore-forming activity. In the environment, L. pneumophila is a parasite of protozoa. The molecular mechanisms by which L. pneumophila kills the protozoan cells, after their exploitation for intracellular proliferation, are not known. In an effort to decipher these mechanisms, we have examined induction of both apoptosis and necrosis in the protozoan Acanthamoeba polyphaga upon infection by L. pneumophila. Our data show that, although A. polyphaga undergoes apoptosis following treatment with actinomycin D, L. pneumophila does not induce apoptosis in these cells. Instead, intracellular L. pneumophila induces necrotic death in A. polyphaga, which is mediated by the pore-forming activity. Mutants of L. pneumophila defective in expression of the pore-forming activity are indistinguishable from the parental strain in intracellular replication within A. polyphaga. The parental strain bacteria cause necrosis-mediated lysis of all the A. polyphaga cells within 48 h after infection, and all the intracellular bacteria are released into the tissue culture medium. In contrast, all cells infected by the mutants remain intact, and the intracellular bacteria are 'trapped' within A. polyphaga after the termination of intracellular replication. Failure to exit the host cell after termination of intracellular replication results in a gradual decline in the viability of the mutant strain bacteria within A. polyphaga starting 48h after infection. Our data show that the pore-forming activity of L. pneumophila is not required for intracellular bacterial replication within A. polyphaga but is required for killing and exiting the protozoan host upon termination of intracellular replication.  相似文献   

12.
Francisella tularensis is a highly virulent intracellular pathogen that invades and replicates within numerous host cell types including macrophages, hepatocytes and pneumocytes. By 24 hours post invasion, F. tularensis replicates up to 1000-fold in the cytoplasm of infected cells. To achieve such rapid intracellular proliferation, F. tularensis must scavenge large quantities of essential carbon and energy sources from the host cell while evading anti-microbial immune responses. We found that macroautophagy, a eukaryotic cell process that primarily degrades host cell proteins and organelles as well as intracellular pathogens, was induced in F. tularensis infected cells. F. tularensis not only survived macroautophagy, but optimal intracellular bacterial growth was found to require macroautophagy. Intracellular growth upon macroautophagy inhibition was rescued by supplying excess nonessential amino acids or pyruvate, demonstrating that autophagy derived nutrients provide carbon and energy sources that support F. tularensis proliferation. Furthermore, F. tularensis did not require canonical, ATG5-dependent autophagy pathway induction but instead induced an ATG5-independent autophagy pathway. ATG5-independent autophagy induction caused the degradation of cellular constituents resulting in the release of nutrients that the bacteria harvested to support bacterial replication. Canonical macroautophagy limits the growth of several different bacterial species. However, our data demonstrate that ATG5-independent macroautophagy may be beneficial to some cytoplasmic bacteria by supplying nutrients to support bacterial growth.  相似文献   

13.
The infectious agent of Legionnaires' disease, Legionella pneumophila, multiplies intracellularly in a variety of eukaryotic cells. Genistein, a tyrosine kinase inhibitor, has been shown to block intracellular replication of L. pneumophila without harming the infected host cell. The present study has been performed to investigate the underlying mechanism. We demonstrate that inhibition of intracellular bacterial growth by genistein is not mediated by its protein tyrosine kinase-modulating effect but by inhibition of L-type calcium channels of the infected host cell.  相似文献   

14.
Legionella pneumophila translocates multiple bacterial effector proteins into host cells to direct formation of a replication vacuole for the bacterium. The emerging consensus is that formation of this compartment involves recruitment of membrane material that traffics between the endoplasmic reticulum (ER) and Golgi. To investigate this model, a targeted approach was used to knock down expression of proteins involved in membrane trafficking, using RNA interference in Drosophila cells. Surprisingly, few single knockdowns of ER-Golgi transport proteins decreased L. pneumophila replication. By analyzing double-stranded RNAs in pairs, combinations were identified that together caused defects in intracellular replication, consistent with the model that membrane traffic funnels into the replication vacuole from multiple sources. In particular, simultaneous depletion of the intermediate compartment and Golgi-tethering factor transport protein particle together with the ER SNARE protein Sec22 reduced replication efficiency, indicating that introduction of lesions at distinct sites in the secretory system reduces replication efficiency. In contrast to knockdowns in secretory traffic, which required multiple simultaneous hits, knockdown of single cytosolic components of ER-associated degradation, including Cdc48/p97 and associated cofactors, was sufficient to inhibit intracellular replication. The requirement for the Cdc48/p97 complex was conserved in mammalian cells, in which replication vacuoles showed intense recruitment of ubiquitinated proteins, the preferred substrates of Cdc48/p97. This complex promoted dislocation of both ubiquitinated proteins and bacterial effectors from the replication vacuole, consistent with the model that maintenance of high-level replication requires surveillance of the vacuole surface. This work demonstrates that L. pneumophila has the ability to gain access to multiple sites in the secretory system and provides the first evidence for a role of the Cdc48/p97 complex in promoting intracellular replication of pathogens and maintenance of replication vacuoles.  相似文献   

15.
Legionella pneumophila is the causative agent of a potentially fatal form of pneumonia named Legionnaires' disease. L. pneumophila survives and replicates inside macrophages by preventing phagosome-lysosome fusion. A large number of L. pneumophila genes, called dot or icm, have been identified that are required for intracellular growth. It has recently been shown that the dot/icm genes code for a putative large membrane complex that forms a type IV secretion system used to alter the endocytic pathway.  相似文献   

16.
Bulk degradation of cytosol and organelles is important for cellular homeostasis under nutrient limitation, cell differentiation and development. This process occurs in a lytic compartment, and autophagy is the major route to the lysosome and/or vacuole. We found that yeast, Saccharomyces cerevisiae, induces autophagy under various starvation conditions. The whole process is essentially the same as macroautophagy in higher eukaryotic cells. However, little is known about the mechanism of autophagy at a molecular level. To elucidate the molecules involved, a genetic approach was carried out and a total of 16 autophagy-defective mutants (apg) were isolated. So far, 14 APG genes have been cloned. Among them we recently found a unique protein conjugation system essential for autophagy. The C-terminal glycine residue of a novel modifier protein Apg12p, a 186-amino-acid protein, is conjugated to a lysine residue of Apg5p, a 294-amino-acid protein, via an isopeptide bond. We also found that apg7 and apg10 mutants were unable to form an Apg12p-Apg5p conjugate. The conjugation reaction is mediated via Apg7p, E1-like activating enzyme and Apg10p, indicating that it is a ubiquitination-like system. These APG genes have mammalian homologues, suggesting that the Apg12 system is conserved from yeast to human. Further molecular and cell biological analyses of APG gene products will give us crucial clues to uncover the mechanism and regulation of autophagy.  相似文献   

17.
18.
Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.  相似文献   

19.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.  相似文献   

20.
Skeletal muscle fibers show a high level of constitutive and starvation-induced macroautophagy. Sporadic Inclusion Body Myositis (sIBM) is the most common acquired skeletal muscle disease in patients above the age of 50 years and is characterized by inflammation and intracellular accumulation of aggregate-prone proteins such as amyloid precursor protein (APP)/beta-amyloid, hyperphosphorylated tau, and presenilin. In a recent study, we found that muscle fibers of sIBM patients show increased frequencies of Atg8/LC3(+) autophagosomes and that intracellular APP/beta-amyloid colocalized with Atg8/LC3 in degenerating fibers. Colocalization of APP/beta-amyloid with LC3(+) autophagosomes was further associated with upregulation of major histocompatibility complex (MHC) class I and class II molecules and T cell infiltration. These findings indicate that APP/beta-amyloid is a substrate for autophagy in skeletal muscle fibers and suggest that degradation of aggregate-prone proteins via macroautophagy can be linked with both immune-mediated and degenerative tissue damage. A better understanding of this pathway in skeletal muscle and in the inflammatory environment of sIBM might provide a rationale for novel therapeutic strategies targeting pathogenic protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号