首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen L  Qiu M  He W  Huang A  Liu J 《Molecular biology reports》2012,39(6):6633-6639
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previous studies suggest that immature dendritic cells (imDCs) might be involved in the induction of peripheral T cell tolerance. While interleukin-10 (IL-10) functions at different levels of the immune response, transforming growth factor-beta 1 (TGF-beta 1) is considered to be a key factor in immune tolerance. In this study, we investigated the effects of immature DC (imDC) co-transfected with IL-10 and TGF-beta 1 genes (IL-10-TGF-beta 1-imDC) on inducing immune tolerance. Moreover, we compared the effects of IL-10-TGF-beta 1-imDC with IL-10 transfected imDC (IL-10-imDC) and TGF-beta 1-transfected imDC (TGF-beta 1-imDC), respectively. IL-10-TGF-beta 1-imDC resulted in the down-regulation of MHC class II, CD80 and CD86. IL-10-TGF-beta 1-imDC could induce T cell hyporesponsiveness, and was reluctant to proliferate. IL-10-TGF-beta 1-imDC was more effective than IL-10-imDC and TGF-beta 1-imDC, respectively. In summary, co-expression of IL-10 and TGF-beta 1 affected the immunity of imDCs and enhanced their tolerogenicity. It might be a promising therapy for donor-specific tolerance after organ transplantation.  相似文献   

2.
3.
It is well known that adoptive transfer of donor-derived tolerogenic dendritic cells (DCs) helps to induce immune tolerance. RelB, one of NF-κB subunits, is a critical element involved in DC maturation. In the present study, our results showed tolerogenic DCs could be acquired via silencing RelB using small interfering RNA. Compared with imDCs, the tolerogenic DCs had more potent ability to inhibit mixed lymphocyte reaction (MLR) and down-regulate Th1 cytokines and prompt the production of Th2 cytokines. They both mediated immune tolerance via the increased of T cell apoptosis and generation of regulatory T cells. Administration of donor-derived tolerogenic DCs significantly prevented the allograft rejection and prolonged the survival time in a murine heart transplantation model. Our results demonstrate donor-derived, RelB-shRNA induced tolerogenic DCs can significantly induce immune tolerance in vitro and in vivo.  相似文献   

4.
The induction of antigen-specific T cell tolerance and its maintenance in the periphery is critical for the prevention of autoimmunity. Recent evidence shows that dendritic cells (DC) not only initiate T cell responses, but are also involved in silencing of T cell immune responses. The functional activities of DC are mainly dependent on their state of activation and differentiation, that is, terminally differentiated mature DC can efficiently induce the development of T effector cells, whereas immature DC are involved in maintenance of peripheral tolerance. The means by which immature DC maintain peripheral tolerance are not entirely clear, however, their functions include the induction of anergic T cells, T cells with regulatory properties as well as the generation of T cells that secrete immunomodulatory cytokines. This review summarizes the current knowledge about the immunoregulatory role of immature DC that might act as guardians for the induction and maintenance of T cell tolerance in the periphery.  相似文献   

5.
Dendritic cell (DC) displays tremendous functional plasticity in response to antigens and plays important roles in inducing immune tolerance. In this study, we investigated the effects of immature DC (imDC) co-transfected with FasL and allergen Der p2 genes (FasL-Der p2-DC) on inducing immune tolerance and modulating airway inflammation of Der p2-induced allergic mice. Moreover, we compared the effects of FasL-Der p2-DC with FasL-transfected imDC (FasL-DC) and Der p2-transfected imDC (Der p2-DC) respectively. Results showed that FasL-Der p2-DC and Der p2-pulsed FasL-DC induced T cell unresponsiveness to Der p2 via apoptosis. Der p2-DC could induce T cell hyporesponsiveness to Der p2. FasL-Der p2-DC, FasL-DC and Der p2-DC could inhibit Th2 response and reduce allergic airway inflammation. FasL-Der p2-DC was more effective than FasL-DC and Der p2-DC, respectively. These results demonstrate that FasL and allergen genes co-expressing DC might be a promising approach to allergy therapy.  相似文献   

6.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

7.
CD8alpha+ and CD8alpha- dendritic cells (DCs) arise from committed bone marrow progenitors and can induce or regulate immune reactivity. Previously, the maturational status of CD8alpha-(myeloid) DCs has been shown to influence allogeneic T cell responses and allograft survival. Although CD8alpha+ DCs have been implicated in central tolerance and found to modulate peripheral T cell function, their influence on the outcome of organ transplantation has not been examined. Consistent with their equivalent high surface expression of MHC and costimulatory molecules, sorted mature C57BL/10J (B10; H2(b)) DCs of either subset primed naive, allogeneic C3H/HeJ (C3H; H2(k)) recipients for Th1 responses. Paradoxically and in contrast to their CD8alpha- counterparts, mature CD8alpha+ B10 DCs given systemically 7 days before transplant markedly prolonged B10 heart graft survival in C3H recipients. This effect was associated with specific impairment of ex vivo antidonor T cell proliferative responses, which was not reversed by exogenous IL-2. Further analyses of possible underlying mechanisms indicated that neither immune deviation nor induction of regulatory cells was a significant contributory factor. In contrast to the differential capacity of the mature DC subsets to affect graft outcome, immature CD8alpha+ and CD8alpha- DCs administered under the same experimental conditions significantly prolonged transplant survival. These observations demonstrate for the first time the innate capacity of CD8alpha+ DCs to regulate alloimmune reactivity and transplant survival, independent of their maturation status. Mobilization of such a donor DC subset with capacity to modulate antidonor immunity may have significant implications for the therapy of allograft rejection.  相似文献   

8.
Dendritic cells (DC) manipulated ex vivo can induce tumor immunity in experimental murine tumor models. To improve DC-based tumor vaccination, we studied whether DC maturation affects the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4 alone or by further addition of TNF-alpha or a cytidine-phosphate-guanosine (CpG)-containing oligonucleotide (ODN-1826), which mimics the immunostimulatory effect of bacterial DNA. Flow cytometric analysis of costimulatory molecules and MHC class II showed that DC maturation was stimulated most by ODN-1826, whereas TNF-alpha had an intermediate effect. The extent of maturation correlated with the secretion of IL-12 and the induction of alloreactive T cell proliferation. In BALB/c mice, s.c. injection of colon carcinoma cells resulted in rapidly growing tumors. In this model, CpG-ODN-stimulated DC cocultured with irradiated tumor cells also induced prophylactic protection most effectively and were therapeutically effective when administered 3 days after tumor challenge. Thus, CpG-ODN-enhanced DC maturation may represent an efficient means to improve clinical tumor vaccination.  相似文献   

9.
T cell development is determined by positive and negative selection events. An intriguing question is how signals through the TCR can induce thymocyte survival and maturation in some and programmed cell death in other thymocytes. This paradox can be explained by the hypothesis that different thymic cell types expressing self-MHC/peptide ligands mediate either positive or negative selection events. Using transgenic mice that express MHC class I (MHC-I) selectively on DC, we demonstrate a compartmentalization of thymic functions and reveal that DC induce CTL tolerance to MHC-I-positive hemopoietic targets in vivo. However, in normal and bone marrow chimeric mice, MHC-I+ DC are sufficient to positively select neither MHC-Ib (H2-M3)- nor MHC-Ia (H2-K)-restricted CD8+ T cells. Thus, thymic DC are specialized in tolerance induction, but cannot positively select the vast majority of MHC-I-restricted CD8+ T cells.  相似文献   

10.

Objective

To investigate the effects of ultrasmall superparamagnetic iron oxide (USPIO) labeling on the maturity or immune tolerance of immature dendritic cells (imDCs) as the success of immunotherapy with immature dendritic cells is highly dependent on immune tolerance.

Results

The feasibility of tracking implanted USPIO-labeled imDCs in vivo by magnetic resonance imaging (MRI) was explored. The effects of USPIO labeling on the immune tolerance of imDCs was examined. USPIO when higher than 200 μg/ml caused considerable damage to imDCs, induced imDC maturation, and impacted the immune tolerance of imDCs. USPIO labeling caused a dose-dependent increase in autophagosome formation in imDCs, and autophagy inhibitors prevented the maturation of imDCs while stimulating their immune tolerance.

Conclusions

We speculate that high concentrations of USPIO can be used to induce imDC maturation, and that this process is likely mediated through an autophagy-related pathway.
  相似文献   

11.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E(2) (PGE(2)) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE(2) to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.  相似文献   

12.
Dendritic cells (DC), the most potent APCs, can initiate the immune response or help induce immune tolerance, depending upon their level of maturation. DC maturation is associated with activation of the NF-kappaB pathway, and the primary NF-kappaB protein involved in DC maturation is RelB, which coordinates RelA/p50-mediated DC differentiation. In this study, we show that silencing RelB using small interfering RNA results in arrest of DC maturation with reduced expression of the MHC class II, CD80, and CD86. Functionally, RelB-silenced DC inhibited MLR, and inhibitory effects on alloreactive immune responses were in an Ag-specific fashion. RelB-silenced DC also displayed strong in vivo immune regulation. An inhibited Ag-specific response was seen after immunization with keyhole limpet hemocyanin-pulsed and RelB-silenced DC, due to the expansion of T regulatory cells. Administration of donor-derived RelB-silenced DC significantly prevented allograft rejection in murine heart transplantation. This study demonstrates for the first time that transplant tolerance can be induced by means of RNA interference using in vitro-generated tolerogenic DC.  相似文献   

13.
Polarization of an immune response toward tolerance or immunity is dictated by the interactions between T cells and dendritic cells (DC), which in turn are modulated by the expression of distinct cell surface molecules, and the cytokine milieu in which these interactions are taking place. Genetic modification of DC with genes coding for specific immunoregulatory cell surface molecules and cytokines offers the potential of inhibiting immune responses by selectively targeting Ag-specific T cells. In this study, the immunomodulatory effects of transfecting murine bone marrow-derived DC with Fas ligand (FasL) were investigated. In this study, we show that FasL transfection of DC markedly augmented their capacity to induce apoptosis of Fas+ cells. FasL-transfected DC inhibited allogeneic MLR in vitro, and induced hyporesponsiveness to alloantigen in vivo. The induction of hyporesponsiveness was Ag specific and was dependent on the interaction between FasL on DC and Fas on T cells. Finally, we show that transfusion of FasL-DC significantly prolonged the survival of fully MHC-mismatched vascularized cardiac allografts. Our findings suggest that DC transduced with FasL may facilitate the development of Ag-specific unresponsiveness for the prevention of organ rejection. Moreover, they highlight the potential of genetically engineering DC to express other genes that affect immune responses.  相似文献   

14.
Dendritic cells (DC) initiate immunity by the activation of naive T cells and control immunity through their ability to induce unresponsiveness of lymphocytes by mechanisms that include deletion and induction of regulatory cells. An inadequate presentation to T cells by tumor-induced "regulatory" DC, among several mechanisms, can explain tolerance to tumor-associated Ags. In this study, we show that tumor-derived mucin profoundly affects the cytokine repertoire of monocyte-derived DC and switch them into IL-10(high)IL-12(low) regulatory APCs with a limited capacity to trigger protective Th1 responses. In fact, DC cocultured with pancreatic tumor cell lines in a Transwell system did not reach full maturation, had low immunostimulatory functions, did not produce IL-12, and released high levels of IL-10. The involvement of known tumor-derived immune-suppressive factors (e.g., vascular endothelial growth factor, TGF-beta, IL-6, and IL-10) was considered and excluded. We provide evidence that tumor-derived MUC1 mucins are responsible for the impaired DC maturation and function. DC obtained in the presence of tumor microenvironment preferentially polarized IL-4(+) response. Moreover, T cells primed by these regulatory DC became anergic and behaved as suppressor/regulatory cells. These findings identify mucin secretion as a novel mechanism of tumor escape from immune surveillance and provide the basis for the generation of potentially tolerogenic DC.  相似文献   

15.
Mucosal tolerance prevents the body from eliciting productive immune responses against harmless Ags that enter the body via the mucosae, and is mediated by the induction of regulatory T cells that differentiate in the mucosa-draining lymph nodes (LN) under defined conditions of Ag presentation. In this study, we show that mice deficient in FcgammaRIIB failed to develop mucosal tolerance to OVA, and demonstrate in vitro and in vivo a critical role for this receptor in modulating the Ag-presenting capacity of dendritic cells (DC). In vitro it was shown that absence of FcgammaRIIB under tolerogenic conditions led to increased IgG-induced release of inflammatory cytokines such as MCP-1, TNF-alpha, and IL-6 by bone marrow-derived DC, and increased their expression of costimulatory molecules, resulting in an altered immunogenic T cell response associated with increased IL-2 and IFN-gamma secretion. In vivo we could show enhanced LN-DC activation and increased numbers of Ag-specific IFN-gamma-producing T cells when FcgammaRIIB(-/-) mice were treated with OVA via the nasal mucosa, inferring that DC modulation by FcgammaRIIB directed the phenotype of the T cell response. Adoptive transfer of CD4(+) T cells from the spleen of FcgammaRIIB(-/-) mice to naive acceptor mice demonstrated that OVA-responding T cells failed to differentiate into regulatory T cells, explaining the lack of tolerance in these mice. Our findings demonstrate that signaling via FcgammaRIIB on DC, initiated by local IgG in the mucosa-draining LN, down-regulates DC activation induced by nasally applied Ag, resulting in those defined conditions of Ag presentation that lead to Tr induction and tolerance.  相似文献   

16.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

17.
Maturation of dendritic cells (DC) is critical for the induction of Ag-specific immunity. Ag-loaded DC matured with LPS, which mediates its effects by binding to Toll-like receptor 4 (TLR4), induce Ag-specific CTL in vitro and in vivo in animal models. However, clinical use of LPS is limited due to potential toxicity. Therefore, we sought to mimic the maturation-inducing effects of LPS on DC by stimulating TLR4-mediated signaling in the absence of exogenous LPS. We developed a constitutively active TLR4 (caTLR4) and demonstrated that transfection of human DC with RNA encoding caTLR4 led to IL-12 and TNF-alpha secretion. Transfection with caTLR4 RNA also induced a mature DC phenotype. Functionally, transfection of DC with caTLR4 RNA enhanced allostimulation of CD4(+) T cells. DC transfected with RNA encoding the MART (Melan-A/MART-1) melanoma Ag were then used to stimulate T cells in vitro. Cotransfection of these DC with caTLR4 RNA enhanced the generation of MART-specific CTL. This CTL activity was superior to that seen when DC maturation was induced using either LPS or a standard mixture of cytokines (TNF-alpha, IL-6, IL-1beta, and PGE(2)). We conclude that transfection of DC with RNA encoding a functional signaling protein, such as caTLR4, may provide a new tool for studying TLR signaling in DC and may be a promising approach for the induction of DC maturation for tumor immunotherapy.  相似文献   

18.
Dendritic cells (DCs) loaded with tumor-associated Ags (TAAs) act as potent adjuvant that initiates antitumor immune responses in vivo. However, TAA-based DC vaccination requires prior identification of TAAs. Apoptotic tumor cells (ATCs) can be an excellent source for DC loading because their potential uncharacterized Ags would be efficiently presented to T cells without any prior characterization and isolation of these Ags. However, ATCs alone are considered to be inefficient for activating antitumor immunity, possibly because of their inability to induce DC maturation. In this study, the aim was to enhance antitumor immune response by taking advantage of ATCs that have been opsonized with IgG (ATC-immune complexes, ATC-ICs) so as to target them to FcR for IgG (FcgammaRs) on DCs. It was found that when compared with ATCs, ATC-ICs were efficiently internalized by DCs via FcgammaRs, and this process induced maturation of DCs, which was more efficient than that of ATCs. Importantly, ATC-IC loading was shown to be more efficient than ATCs alone in its capacity for inducing antitumor immunity in vivo, in terms of cytotoxic T cell induction and tumor rejection. These results show that using ATC-ICs may overcome the limitations and may enhance the immune response of current ATC-based DC vaccination therapy.  相似文献   

19.
The contribution of CD4+ T cells to dendritic cell (DC) activation and to the induction of CD8+ T cell responses in vivo was investigated using a model of antitumor immune responses. Immunization with peptide-loaded MHC class II-deficient (MHC class II-/-) DC induced the activation of Ag-specific CD8+ T cells and their accumulation in the lymph nodes and spleens of immunized mice. The accumulation induced by MHC class II-/- DC immunization was lower than the accumulation observed after immunization with MHC class II+/+ DC. Similarly, immunization with peptide-loaded, MHC class II-/- DC induced some degree of protection against tumor challenge, but this protection was lower than the protection achieved after immunization with MHC class II+/+ DC. Incubation with a membrane-associated form of CD40 ligand resulted in the up-regulation of costimulatory molecules on MHC class II-/- DC and fully rescued their ability to induce antitumor immunity. We conclude that CD4+ T cells play a critical role in the generation of antitumor immune responses through their capacity to induce the activation of DC via CD40/CD40 ligand interaction, and thus maximize CD8+ T cell responses.  相似文献   

20.
Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, their capacity to activate TLRs and to affect DC maturation, cytokine production and T cell polarizing capacity were determined. Different bacterial species differed in their potency to affect these parameters. In general, on the DC level differences were found in the maturation-inducing capacity of gram-negative and gram-positive bacteria. Remarkably, these differences did not result in differential polarization of the T cell response. With respect to TLRs, TLR4 activation by pathogens correlated with their ability to induce DC maturation, while for TLR2 and TLR5 such a correlation was absent. Taken together, this study provides insight into qualitative differences and general effects of pathogen-derived molecules on dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号