首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of mitochondrial glycine oxidation estimated by CO2-release and glycine-bicarbonate exchange activities in fully greened tissues are approximately 10 times greater than those of etiolated pea leaves and potato tuber mitochondria. The release of CO2 from glycine in intact mitochondria isolated from dark-grown and nonphotosynthetic tissues was sensitive to inhibitors of mitochondrial electron transport, glycine transport, and glycine decarboxylase activities. The CO2-release and glycine-bicarbonate exchange activities in crude mitochondrial protein extracts from light-grown versus dark-grown tissues exhibited light/dark ratios of 12 and 21, respectively. This suggests that the differences in capacity to oxidize glycine reside with the glycine decarboxylase enzyme complex itself. The complex is composed of four subunit enzymes, the P, H, T, and L proteins, which can be isolated individually and reconstituted into the active enzyme. The activities of P and T proteins were at least 10 times higher in fully greened pea leaves than in the etiolated tissue, while the H and L protein activities were four times higher in these same tissues. The levels of P and T proteins detected immunochemically were substantially lower in total mitochondrial extracts prepared from leaves of dark-grown pea seedlings. Labeling of whole pea seedlings and in vitro protein synthesis with isolated mitochondria indicated that the entire glycine decarboxylase enzyme complex is cytoplasmically synthesized and therefore encoded by the nucleus. Polypeptides synthesized from total leaf polyadenylated mRNA isolated from leaves of both the dark-grown and light-treated peas indicated the presence of P protein. This implies that translatable messages for this enzyme are present at some level throughout leaf development.  相似文献   

2.
Mesophyll mitochondria from green leaves of the C(4) plants Zea mays (NADP-ME-type), Panicum miliaceum (NAD-ME-type) and Panicum maximum (PEP-CK-type) oxidized NADH, malate and succinate at relatively high rates with respiratory control, but glycine was not oxidized. Among the mitochondrial proteins involved in glycine oxidation, the L, P and T proteins of glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) were present, while the H protein of GDC was undetectable. In contrast, mesophyll mitochondria from etiolated leaves of Z. mays oxidized glycine at a slow rate and with no respiratory control, and contained the H protein as well as the other GDC proteins and SHMT. The T and P proteins and SHMT were present in the mitochondria from etiolated leaves at significantly higher levels than in those from green leaves of Z. mays. The content of the L protein was almost identical in all three C(4) plants examined and close to the value obtained for mesophyll mitochondria from the C(3) plant Pisum sativum, whereas the other GDC proteins and SHMT were less abundant than the L protein. We discuss possible reasons for the H protein's absence in mesophyll mitochondria of C(4) plants, as well as the role(s) the other GDC components could play in its absence.  相似文献   

3.
Mitochondria were isolated from mesophyll protoplasts and bundlesheath protoplasts or strands which were obtained by enzymaticdigestion of six C4 species: Zea mays, Sorghum bicolor, Panicummiliaceum, Panicum capillare, Panicum maximum and Chloris gayana,representative of three C4 types. Photorespiratory glycine oxidationand related enzyme activities of mesophyll and bundle sheathmitochondria were compared. Mesophyll mitochondria showed good P/O ratios with malate andsuccinate as substrate but lacked the ability to oxidize glycine.On the other hand, mitochondria isolated from bundle sheathprotoplasts of P. miliaceum and bundle sheath strands of Z.mays possessed glycine oxidation activity similar to that ofmitochondria from C3 plant leaves. The two enzymes involvedin glycine metabolism in mitochondria, serine hydroxymethyltransferaseand glycine decarboxylase, were also assayed in the mitochondriaof the two cell types. The activities of the two enzymes inbundle sheath mitochondria were in the range found in C3 mitochondria.In contrast, the activities in mesophyll mitochondria were eithernot detectable or far lower than those in bundle sheath mitochondriaand ascribed to contaminating bundle sheath mitochondria. The present results indicate the deficiency of a complete glycineoxidation system in mesophyll mitochondria and also a differentiationbetween mesophyll and bundle sheath cells of C4 plants withrespect to the photorespiratory activities of the mitochondria. (Received June 8, 1983; Accepted August 29, 1983)  相似文献   

4.
3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) was solubilized from human term-placental microsomes and mitochondria using the non-ionic detergent, polyoxyethylene 20 cetyl ether (BrijR-58). Electron photomicrographs showed microsomes and mitochondria well disrupted by the detergent. The pregnene (C-21) and androstene (C-19) activities co-solubilized over a range (0.04-0.44) of BrijR-58/protein (B/P) concentration ratios (w/w). Optimal solubilization of the C-19 and C-21 activities were 63.3 +/- 2.6% (mean +/- SEM) from mitochondria (B/P ratio 0.37) and 71.8 +/- 2.1% from microsomes (B/P ratio 0.34). Detergent treatment of microsomes and mitochondria--varying time (5-90 min, pH 7.4) or varying pH (6.0-7.8, 90 min)--yielded C-19 activities identical with C-21 activities. The C-21/C-19 specific activity ratios of 3 beta-HSD in particulate, solubilized and chromatographed preparations were 2.28 +/- 0.16 (mean +/- SEM) for mitochondria and 1.97 +/- 0.07 for microsomes. 3 beta-HSD molecular weight estimates were 208,000 (microsomes) and 220,000 (mitochondria). These studies argue that a single protein is responsible for both the C-19 and C-21 activities of 3 beta-HSD and that this protein is the same in microsomes and mitochondria.  相似文献   

5.
Threonine is a precursor of glycine in the rat, but the metabolic pathway involved is unclear. To elucidate this pathway, the biosynthesis of glycine, and of aminoacetone, from L-threonine were studied in rat liver mitochondrial preparations of differing integrities. In the absence of added cofactors, intact mitochondria formed glycine and aminoacetone in approximately equal amounts from 20 mM L-threonine, but exogenous NAD+ decreased and CoA increased the ratio of glycine to aminoacetone formed. In intact and freeze-thawed mitochondria, the ratio of glycine to aminoacetone formed was markedly sensitive to the concentration of L-threonine, glycine being the major product at low L-threonine concentrations. Disruption of mitochondrial integrity by sonication (1 min) decreased the ratio of glycine to aminoacetone formed, and in 20000 X g supernatant fractions from sonicated (3 min) mitochondria, aminoacetone was the major product. The main non-nitogenous two-carbon compound detected when intact mitochondria catabolized L-threonine to glycine was acetate, which was probably derived from deacylation of acetyl-CoA. These results suggest that glycine formation from L-threonine in rat liver mitochondria occurred primarily by the coupled activities of threonine dehydrogenase and 2-amino-3-oxobutyrate CoA-ligase, the extent of coupling between the enzymes being dependent upon a close physical relationship and upon the flux through the dehydrogenase reaction. In vivo glycine synthesis would predominate, and aminoacetone would be a minor product.  相似文献   

6.
Threonine is a precursor of glycine in the rat, but the metabolic pathway involved is unclear. To elucidate this pathway, the biosynthesis of glycine, and of aminoacetone, from l-threonine were studied in rat liver mitochondrial preparations of differing integrities. In the absence of added cofactors, intact mitochondria formed glycine and aminoacetone in approximately equal amounts from 20 mM l-threonine, but exogenous NAD+ decreased and CoA increased the ratio of glycine to aminoacetone formed. In intact and freeze-thawed mitochondria, the ratio of glycine to aminoacetone formed was markedly sensitive to the concentration of l-threonine, glycine being the major product at low l-threonine concentrations. Disruption of mitochondrial integrity by sonication (1 min) decreased the ratio of glycine to aminoacetone formed, and in 20 000 × g supernatant fractions from sonicated (3 min) mitochondria, aminoacetone was the major product. The main non-nitogenous tow-carbon compound detected when intact mitochondria catabolized l-threonine to glycine was acetate, which was probably derived from deacylation of acetyl-CoA. These results suggest that glycine formation from l-threonine in rat liver mitochondria occured primarily by the coupled activities of threonine dehydrogenase and 2-amino-3-oxobutyrate CoA-ligase, the extent of coupling between the enzymes being dependent upon a close physical relationship and upon the flux through the dehydrogenase reaction. In vivo glycine synthesis would predominate, and aminoacetone would be a minor product.  相似文献   

7.
Two chimeric synthetic peptides incorporating immunodominant sequences from HTLV-II virus were synthesized. Monomeric peptides P2 and P3 represent sequences from transmembrane protein (gp21) and envelope protein (gp46) of the virus. The peptide P2 is a gp21 (370-396) sequence and the peptide P3 is a gp46 (178-205) sequence. Those peptides were arranged in a way that permits one to obtain different combinations of chimeric peptides (P2-GG-P3 and P3-GG-P2), separated by two glycine residues as spacer arms. The antigenic activity of these peptides was evaluated by UltramicroEnzyme-linked immunosorbent assay (UMELISA) by using panels anti-HTLV-II-positive sera (n = 11), anti-HTLV-I/II-positive sera (n = 2), HTLV-positive (untypeable) serum samples (n = 2), and anti-HTLV-I-positive sera (n = 22), while specificity was evaluated with anti-HIV-positive samples (n = 19) and samples from healthy blood donors (n = 30). The efficacy of the chimeric peptides in solid-phase immunoassays was compared with the monomeric peptides and a mixture of the monomeric peptides. Higher sensitivity was observed for chimeric peptide Q5 assay. Those results may be related to a higher peptide adsorption capacity to the solid surface and for epitope accessibility to the antibodies. This chimeric peptide would be very useful for HTLV-II diagnostic.  相似文献   

8.
Fujita T  Yanaga K 《Life sciences》2007,80(20):1846-1850
Although glutamine is an important fuel for the intestinal epithelium, the metabolic fate of glutamine extracted by the human intestine remains unclear. The aim of this study was to investigate the relationship between glutamine extraction and the release of other amino acids by the human intestine. In 21 patients undergoing major abdominal cancer surgery, differences in the plasma concentrations of 22 amino acids including glutamine across the superior or inferior mesenteric vein draining viscera were measured using a high-performance liquid chromatography. Arterial minus venous (A-V) or venous minus arterial (V-A) balances of the amino acids were calculated, and then the correlations between A-V differences of glutamine and V-A differences of amino acids released from the intestine were analyzed. Mean extraction rate of glutamine by the small intestine was 28.45%, approximately 3 times higher than 9.41% in the distal colon. Citrulline, proline, alanine, glycine, and arginine were released by the small intestine into the portal circulation. Positive correlations were found between glutamine uptake and the production of citrulline (r=0.814, P=0.0013) and glycine (r=0.734, P=0.0080). In conclusion, the synthesis of citrulline from glutamine by the small intestine is highly suspected, and the contribution of gut glutamine extraction to the release of glycine into the portal circulation is also supposed.  相似文献   

9.
10.
Transport of glycine by rat brain and liver mitochondria has been investigated by both [14C]glycine uptake and swelling experiments. Glycine enters mitochondria passively down its concentration gradient by a respiratory-independent carrier-mediated process. This view is supported by the following observations: (a) glycine inside the mitochondria reaches the incubation medium concentration; (b) mitochondria swell in the presence of isoosmotic solutions of glycine in a concentration-dependent fashion; (c) the uptake of glycine is not influenced by respiratory inhibitors such as KCN or by uncouplers such as carbonylcyanide p-trifluoromethoxyphenylhydrazone; (d) initial rates of uptake approach saturation kinetics, the apparent Km of the rat brain mitochondria for glycine being 1.7 mM and that of the liver mitochondria being 5.7 mM; (e) the rate of swelling is inhibited by methylmalonate, propionate and, at pH 6.5, by mersalyl, and (f) uptake is inhibited by phosphoserine, methylmalonate and propionate, but not by alanine or proline.  相似文献   

11.
A cDNA encoding P‐protein of glycine decarboxylase was expressed in antisense orientation in leaves of potato (Solanum tuberosum cv. Solara) under control of the promoter of a P‐protein gene of glycine decarboxylase from Flaveria pringlei. This promoter targets gene expression preferentially to the leaf mesophyll cells. In two of the transgenic lines, mitochondria oxidise glycine only with extremely low rates. Phenotypically, these transgenic lines were only marginally different from wild type plants under ambient carbon dioxide concentrations and indistinguishable from wild type plants when grown under 800 ppm carbon dioxide. When grown in ambient carbon dioxide, transgenic plants accumulated high amounts of glycine during the light period followed by nearly complete degradation in the following night.  相似文献   

12.
The kinetic constants for the papain-catalyzed hydrolysis of a series of substrates with glycine or alanine in the P1 position are discussed. The substrates have N-benzoyl, N-(p-nitrobenzoyl), N-(beta-phenylpropionyl), or N-(methyloxycarbonyl)phenylalanine attached to the P1 moiety, and kinetic constants are obtained for both esters and thiono esters. The results for the hydrolysis of esters can be readily interpreted in terms of the known specificity of papain. For any glycine ester the change in kcat/Km upon substituting C=S for C=O or upon substituting an alpha-CH3 group is minimal. However, upon making both these substitutions, i.e., going from a glycine ester to an alanine thiono ester substrate, larger changes are seen for this ratio. Data for N-benzoyl- and N-(beta-phenylpropionyl)glycine and -alanine methyl thiono esters show that k2 is the parameter most affected by the double C=S and alpha-CH3 substitution. A further conclusion is that the deacylation rate constants for any pair of glycine and alanine dithioacyl papains are similar; e.g., for the intermediates based on the "good" substrates PheAla and PheGly k3 differs by only 20%. This is a surprising finding in light of the very different conformations and interactions of the bound acyl groups revealed by resonance Raman spectroscopy and raises the possibility that specific stereochemical effects, such as the oxyanion hole and general base catalysis, are not operating in the hydrolysis of dithioacyl papains.  相似文献   

13.
The relationship between glycine oxidation and nitrate reduction was studied using tobacco (Nicotiana tabacum L.) leaf disks and reconstituted system of isolated mitochondria and NR (Nitrate reductase). It was found that glycine, either vacuum-infiltrated in to leaf disks or added to the reconstituted system, could increase the rate of nitrate reduction. The stimulating effect of glycine on nitrate reduction was greatly influenced by preillumination treatment of tobacco leaves, and also by the activity of respiratory chain. The rate of glycinedependent O2 consumption by mitochondria was lowered when KNO3 and NR were added to the system. It was also found that the activity of glycine decarboxylase increased with increase in nitrate concentrations in the sandculture medium. It was concluded that oxidative decarboxylation of glycine in mitochondria of leaf cells of C3 plants could provide NADH for nitrate reduction in cytoplasm in the light, and nitrate reduction and glycine oxidation were influenced by each other.  相似文献   

14.
Aldehyde dehydrogenase from bovine liver mitochondria has been crystallized using the sitting drop method of vapor diffusion at 22 degrees C. The crystals formed from solutions containing, 40 mM-sodium citrate, 1 mM-NAD+ and 21% to 24% polyethylene glycol 3400 (pH 5.3 to 5.5). X-ray diffraction data collected from these crystals indicate that the crystals belong to the orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 153.7 A, b = 159.37 A and c = 101.45 A. The crystals diffract to at least 2.9 A and a tetramer may comprise the asymmetric unit.  相似文献   

15.
In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment.  相似文献   

16.
Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels.  相似文献   

17.
Characteristic profiles of the free amino acid concentration in umbilical cord blood of growth retarded newborns have been observed. We hypothesized that the amniotic fluid of growth retarded fetal rats would show an increase in the ratio between glycine and valine which would parallel the pattern observed in the cord blood of growth retarded neonates, thus providing an index for the antepartum identification of the substrate deprived growth retarded fetus. Six test and 6 control dams were tested. Four fetuses per dam, matched for uterine location were examined. Test animals were fasted for 72 hours. Sampling was performed on day 21 under anaesthesia. Fetal size was significantly reduced (P < 0.0001) in the test group. [T = 2.68 gs. +/- 0.28 vs. C = 3.67 gs. +/- 0.25]. Fetal plasma concentrations of glycine showed an increase in test animals (P < 0.01) while valine showed a significant reduction (P < 0.0001). Glycine (pm/microliters) T = 308 +/- 64 vs. C = 269 +/- 47, valine (pm/microliters) T = 424 +/- 79 vs. C = 671 +/- 218]. Amniotic fluid concentrations for both glycine and valine were significantly decreased (P < 0.0001) in test animals. [Glycine (pm/microliters) T = 710 +/- 124 vs. C = 931 +/- 178; valine (pm/microliters) T = 845 +/- 169 vs. C = 1,339 +/- 234]. The glycine/valine ratio was significantly increased (P < 0.01) in both fetal plasma and amniotic fluid in test animals [Plasma T = 0.74 +/- 0.18 vs. C = 0.43 +/- 0.13. Amniotic fluid T = 0.85 +/- 0.08 vs. C = 0.69 +/- 0.09]. Consistent with our hypothesis, the amniotic fluid concentrations generally parallel the observations made in the plasma. This finding could enhance the antepartum identification of the substrate deprived growth retarded fetus.  相似文献   

18.
Mitochondria isolated from pea leaves (Pisum sativum L.) readily oxidized malate and glycine as substrates. The addition of glycine to mitochondria oxidizing malate in state 3 diminished the rate of malate oxidation. When glycine was added to mitochondria oxidizing malate in state 4, however, the rate of malate oxidation was either unaffected or stimulated. The reason both glycine and malate can be metabolized in state 4 appears to be that malate only used part of the electron transport capacity available in these mitochondria in this state. The remaining electron transport capacity was used by glycine, thus allowing both substrates to be oxidized simultaneously. This can be explained by differential use of two NADH dehydrogenases by glycine and malate and an increase in alternate oxidase activity upon glycine addition. These results help explain why photorespiratory glycine oxidation and its associated demand for NAD do not inhibit citric acid cycle function in leaves.  相似文献   

19.
Glucagon stimulates 14CO2 production from [1-14C] glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from [1-14C]glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets.  相似文献   

20.
Lenne C  Neuburger M  Douce R 《Plant physiology》1993,101(4):1157-1162
We observed a rapid decline in the rate of glycine oxidation by purified pea (Pisum sativum L.) leaf mitochondria preincubated at 40[deg]C for 2 min. In contrast, exogenous NADH and succinate oxidations were not affected by the heat treatment. We first demonstrated that the inhibition of glycine oxidation was not attributable to a direct effect of high temperatures on glycine decarboxylase/serine hydroxymethyltransferase. We observed that (a) addition of NAD+ to the incubation medium resulted in a resumption of glycine-dependent O2 uptake by intact mitochondria, (b) addition of NAD+ to the suspending medium prevented the decline in the rate of glycine-dependent O2 consumption by pea leaf mitochondria incubated at 40[deg]C, (c) NAD+ concentration in the matrix space collapses within only 5 min of warm temperature treatment, and (d) mitochondria treated with the NAD+ analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3[prime]-NAD+ retained high rates of glycine-dependent O2 uptake after preincubation at 40[deg]C. Therefore, we conclude that the massive and rapid efflux of NAD+, leading to the apparent inhibition of glycine oxidation, occurs through the specific NAD+ carrier present in the inner membrane of plant mitochondria. Finally, our data provide further evidence that NAD+ is not firmly bound to the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号