首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

2.
14-3-3 proteins complex with many signaling molecules, including the Raf-1 kinase. However, the role of 14-3-3 in regulating Raf-1 activity is unclear. We show here that 14-3-3 is bound to Raf-1 in the cytosol but is totally displaced when Raf-1 is recruited to the plasma membrane by oncogenic mutant Ras, in vitro and in vivo. 14-3-3 is also displaced when Raf-1 is targeted to the plasma membrane. When serum-starved cells are stimulated with epidermal growth factor, some recruitment of 14-3-3 to the plasma membrane is evident, but 14-3-3 recruitment correlates with Raf-1 dissociation and inactivation, not with Raf-1 recruitment. In vivo, overexpression of 14-3-3 potentiates the specific activity of membrane-recruited Raf-1 without stably associating with the plasma membrane. In vitro, Raf-1 must be complexed with 14-3-3 for efficient recruitment and activation by oncogenic Ras. Recombinant 14-3-3 facilitates Raf-1 activation by membranes containing oncogenic Ras but reduces the amount of Raf-1 that associates with the membranes. These data demonstrate that the interaction of 14-3-3 with Raf-1 is permissive for recruitment and activation by Ras, that 14-3-3 is displaced upon membrane recruitment, and that 14-3-3 may recycle Raf-1 to the cytosol. A model that rationalizes many of the apparently discrepant observations on the role of 14-3-3 in Raf-1 activation is proposed.  相似文献   

3.
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.  相似文献   

4.
Recent reports have demonstrated the in vivo association of Raf-1 with members of the 14-3-3 protein family. To address the significance of the Raf-1-14-3-3 interaction, we investigated the enzymatic activity and biological function of Raf-1 in the presence and absence of associated 14-3-3. The interaction between these two molecules was disrupted in vivo and in vitro with a combination of molecular and biochemical techniques. Biochemical studies demonstrated that the enzymatic activities of Raf-1 were equivalent in the presence and absence of 14-3-3. Furthermore, mixing of purified Raf-1 and 14-3-3 in vitro was not sufficient to activate Raf-1. With a molecular approach, Cys-165 and Cys-168 as well as Ser-259 were identified as residues of Raf-1 required for the interaction with 14-3-3. Cys-165 and Cys-168 are located within the conserved cysteine-rich region of the CR1 domain, and Ser-259 is a conserved site of serine phosphorylation found within the CR2 domain. Mutation of either Cys-165 and Cys-168 or Ser-259 prevented the stable interaction of Raf-1 with 14-3-3 in vivo. Consistent with the model in which a site of serine phosphorylation is involved in the Raf-1-14-3-3 interaction, dephosphorylated Raf-1 was unable to associate with 14-3-3 in vitro. Phosphorylation may represent a general mechanism mediating 14-3-3 binding, because dephosphorylation of the Bcr kinase (known to interact with 14-3-3) also eliminated its association with 14-3-3. Finally, mutant Raf-1 proteins unable to stably interact with 14-3-3 exhibited enhanced enzymatic activity in human 293 cells and Xenopus oocytes and were biologically activated, as demonstrated by their ability to induced meiotic maturation of Xenopus oocytes. However, in contrast to wild-type Raf-1, activation of these mutants was independent of Ras. Our results therefore indicate that interaction with 14-3-3 is not essential for Raf-1 function.  相似文献   

5.
Phorbol ester stimulation of the MAPK cascade is believed to be mediated through the protein kinase C (PKC)-dependent activation of Raf-1. Although several studies suggest that phorbol ester stimulation of MAPK is insensitive to dominant-negative Ras, a requirement for Ras in Raf-1 activation by PKC has been suggested recently. We now demonstrate that in normal, quiescent mouse fibroblasts, endogenous c-N-Ras is constitutively associated with both c-Raf-1 and PKC epsilon in a biochemically silent, but latent, signaling module. Chemical inhibition of novel PKCs blocks phorbol 12-myristate 13-acetate (PMA)-mediated activation of MAPKs. Down-regulation of PKC epsilon protein levels by antisense oligodeoxyribonucleotides blocks MAPK activation in response to PMA stimulation, demonstrating that PKC epsilon activity is required for MAPK activation by PMA. c-Raf-1 activity in immunoprecipitated c-N-Ras.c-Raf-1.PKC epsilon complexes is stimulated by PMA and is inhibited by GF109203X, thereby linking c-Raf-1 activation in this complex to PKC activation. These observations suggest that in quiescent cells Ras is organized into ordered, inactive signaling modules. Furthermore, the regulation of the MAPK cascade by both Ras and PKC is intimately linked, converging at the plasma membrane through their association with c-Raf-1.  相似文献   

6.
Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver dysfunction in humans and is epidemiologically closely associated with the development of human hepatocellular carcinoma. Among HCV components, core protein has been reported to be implicated in cell growth regulation both in vitro and in vivo, although mechanisms explaining those effects are still unclear. In the present study, we identified that members of the 14-3-3 protein family associate with HCV core protein. 14-3-3 protein bound to HCV core protein in a phosphoserine-dependent manner. Introduction of HCV core protein caused a substantial increase in Raf-1 kinase activity in HepG2 cells and in a yeast genetic assay. Furthermore, the HCV core-14-3-3 interaction was essential for Raf-1 kinase activation by HCV core protein. These results suggest that HCV core protein may represent a novel type of Raf-1 kinase-activating protein through its interaction with 14-3-3 protein and may contribute to hepatocyte growth regulation.  相似文献   

7.
Kalmes A  Deou J  Clowes AW  Daum G 《FEBS letters》1999,444(1):71-74
SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imi dazole) is widely used as a specific inhibitor of p38 mitogen-activated protein kinase (MAPK). Here, we report that SB203580 activates the serine/threonine kinase Raf-1 in quiescent smooth muscle cells in a dose-dependent fashion. The concentrations of SB203580 required lie above those necessary to inhibit p38 MAPK and we were unable to detect basal levels of active p38 MAPK. SB203580 does not directly activate Raf-1 in vitro, and fails to activate Ras, MEK, and ERK in intact cells. In vitro, however, SB203580-stimulated Raf-1 activates MEK1 in a coupled assay. We conclude that activation of Raf-1 by SB203580 is not mediated by an inhibition of p38 MAPK, is Ras-independent, and is uncoupled from MEK/ERK signaling.  相似文献   

8.
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.  相似文献   

9.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

10.
S Mizutani  K Inouye  H Koide  Y Kaziro 《FEBS letters》2001,507(3):295-298
The mechanism of Ras-induced Raf-1 activation is not fully understood. Previously, we identified a 400-kDa protein complex as a Ras-dependent Raf-1 activator. In this study, we identified B-Raf as a component of this complex. B-Raf was concentrated during the purification of the activator. Immunodepletion of B-Raf abolished the effect of the activator on Raf-1. Furthermore, B-Raf and Ras-activated Raf-1 co-operatively, when co-transfected into human embryonic kidney 293 cells. On the other hand, Ras-dependent extracellular signal-regulated kinase/mitogen-activated protein kinase kinase stimulator (a complex of B-Raf and 14-3-3) failed to activate Raf-1 in our cell-free system. These results suggest that B-Raf is an essential component of the Ras-dependent Raf-1 activator.  相似文献   

11.
Cyclic AMP can either activate or inhibit the mitogen-activated protein kinase (MAPK) pathway in different cell types; MAPK activation has been observed in B-Raf-expressing cells and has been attributed to Rap1 activation with subsequent B-Raf activation, whereas MAPK inhibition has been observed in cells lacking B-Raf and has been attributed to cAMP-dependent protein kinase (protein kinase A)-mediated phosphorylation and inhibition of Raf-1 kinase. We found that cAMP stimulated MAPK activity in CHO-K1 and PC12 cells but inhibited MAPK activity in C6 and NB2A cells. In all four cell types, cAMP activated Rap1, and the 95- and 68-kDa isoforms of B-Raf were expressed. cAMP activation or inhibition of MAPK correlated with activation or inhibition of endogenous and transfected B-Raf kinase. Although all cell types expressed similar amounts of 14-3-3 proteins, approximately 5-fold less 14-3-3 was associated with B-Raf in cells in which cAMP was inhibitory than in cells in which cAMP was stimulatory. We found that the cell type-specific inhibition of B-Raf could be completely prevented by overexpression of 14-3-3 isoforms, whereas expression of a dominant negative 14-3-3 mutant resulted in partial loss of B-Raf activity. Our data suggest that 14-3-3 bound to B-Raf protects the enzyme from protein kinase A-mediated inhibition; the amount of 14-3-3 associated with B-Raf may explain the tissue-specific effects of cAMP on B-Raf kinase activity.  相似文献   

12.
We have previously demonstrated that a 33kDa C-terminal fragment of c-Raf-1 underwent a mobility shift in response to hydrogen peroxide (H(2)O(2)) and phorbol myristate acetate (PMA), respectively. In this study, we have demonstrated that H(2)O(2) induced the activation of N-terminal deletion mutant as well as full length Raf-1 kinase. The pharmacological PKC activator PMA also induced a weak increase in Raf-1 kinase activity through PKC-epsilon activation as determined by the transient expression of dominant negative mutants of PKC-epsilon-K436R. Interestingly, H(2)O(2) produced synergistic increase of PMA-stimulated Raf-1 kinase activation after simultaneous treatment of PMA and H(2)O(2). This synergistic activation of Raf-1 kinase was further enhanced by cypermethrin (an inhibitor of protein phosphatase 2B) and dephostatin (tyrosine kinase inhibitor) implying an inhibitory role for these phosphatases in the Raf-1 signaling pathway. Taken together, our data suggest that the synergistic activation of Raf-1 kinase in response to PMA and H(2)O(2) occurs via mechanisms that involve an interaction of Raf-1 kinase and PKC-epsilon, along with a transient phosphorylation of both Raf-1 kinase and PKC.  相似文献   

13.
A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.  相似文献   

14.
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in the regulation of energy homeostasis. Previously, AMPK was reported to phosphorylate serine 621 of Raf-1 in vitro. In the present study, we investigated a possible role of AMPK in extracellular signal-regulated kinase (Erk) cascades, using 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), a cell-permeable activator of AMPK and antisense RNA experiments. Activation of AMPK by AICAR in NIH-3T3 cells resulted in drastic inhibitions of Ras, Raf-1, and Erk activation induced by insulin-like growth factor 1 (IGF-1). Expression of an antisense RNA for the AMPK catalytic subunit decreased the AMPK activity and significantly diminished the AICAR effect on IGF-1-induced Ras activation and the subsequent Erk activation, indicating that its effect is indeed mediated by AMPK. Phosphorylation of Raf-1 serine 621, however, was not involved in AMPK-mediated inhibition of Erk cascades. In contrast to IGF-1, AICAR did not block epidermal growth factor (EGF)-dependent Raf-1 and Erk activation, but our results demonstrated that multiple Raf-1 upstream pathways induced by EGF were differentially affected by AICAR: inhibition of Ras activation and simultaneous induction of Ras-independent Raf activation. The activities of IGF-1 and EGF receptor were not affected by AICAR. Taken together, our results suggest that AMPK differentially regulate Erk cascades by inhibiting Ras activation or stimulating the Ras-independent pathway in response to the varying energy status of the cell.  相似文献   

15.
We recently established a two-stage in vitro assay for KSR kinase activity in which KSR never comes in contact with any recombinant kinase other than c-Raf-1 and defined the epidermal growth factor (EGF) as a potent activator of KSR kinase activity (Xing, H. R., Lozano, J., and Kolesnick, R. (2000) J. Biol. Chem. 275, 17276-17280). That study, however, did not address the mechanism of c-Raf-1 stimulation by activated KSR. Here we show that phosphorylation of c-Raf-1 on Thr(269) by KSR is necessary for optimal activation in response to EGF stimulation. In vitro, KSR specifically phosphorylated c-Raf-1 on threonine residues during the first stage of the two-stage kinase assay. Using purified wild-type and mutant c-Raf-1 proteins, we demonstrate that Thr(269) is the major c-Raf-1 site phosphorylated by KSR in vitro and that phosphorylation of this site is essential for c-Raf-1 activation by KSR. KSR acts via transphosphorylation, not by increasing c-Raf-1 autophosphorylation, as kinase-inactive c-Raf-1(K375M) served as an equally effective KSR substrate. In vivo, low physiologic doses of EGF (0.001-0.1 ng/ml) stimulated KSR activation and induced Thr(269) phosphorylation and activation of c-Raf-1. Low dose EGF did not induce serine or tyrosine phosphorylation of c-Raf-1. High dose EGF (10-100 ng/ml) induced no additional Thr(269) phosphorylation, but rather increased c-Raf-1 phosphorylation on serine residues and Tyr(340)/Tyr(341). A Raf-1 mutant with valine substituted for Thr(269) was unresponsive to low dose EGF, but was serine- and Tyr(340)/Tyr(341)-phosphorylated and partially activated at high dose EGF. This study shows that Thr(269) is the major c-Raf-1 site phosphorylated by KSR. Furthermore, phosphorylation of this site is essential for c-Raf-1 activation by KSR in vitro and for optimal c-Raf-1 activation in response to physiologic EGF stimulation in vivo.  相似文献   

16.
By binding to serine-phosphorylated proteins, 14-3-3 proteins function as effectors of serine phosphorylation. The exact mechanism of their action is, however, still largely unknown. Here we demonstrate a requirement for 14-3-3 for Raf-1 kinase activity and phosphorylation. Expression of dominant negative forms of 14-3-3 resulted in the loss of a critical Raf-1 phosphorylation, while overexpression of 14-3-3 resulted in enhanced phosphorylation of this site. 14-3-3 levels, therefore, regulate the stoichiometry of Raf-1 phosphorylation and its potential activity in the cell. Phosphorylation of Raf-1, however, was insufficient by itself for kinase activity. Removal of 14-3-3 from phosphorylated Raf abrogated kinase activity, whereas addition of 14-3-3 restored it. This supports a paradigm in which the effects of phosphorylation on serine as well as tyrosine residues are mediated by inducible protein-protein interactions.  相似文献   

17.
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.  相似文献   

18.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

19.
Wee1 protein kinase plays an important regulatory role in cell cycle progression. It inhibits Cdc-2 activity by phosphorylating Tyr15 and arrests cells at G2-M phase. In an attempt to understand Wee1 regulation during cell cycle, yeast two-hybrid screening was used to identify Wee1-binding protein(s). Five of the eight positive clones identified encode 14-3-3beta. In vivo binding assay in 293 cells showed that both full-length and NH2-terminal truncated Wee1 bind with 14-3-3beta. The 14-3-3beta binding site was mapped to a COOH-terminal consensus motif, RSVSLT (codons 639 to 646). Binding with 14-3-3beta increases the protein level of full-length Wee1 but not of the truncated Wee1. Accompanying the protein level increases, the kinase activity of Wee1 also increases when coexpressed with 14-3-3beta. Increased Wee1 protein level/enzymatic activity is accountable, at least in part, to an increased Wee1 protein half-life when coexpressed with 14-3-3beta. The protein half-life of the NH2-terminal truncated Wee1 is much longer than that of the full-length protein and is not affected by 14-3-3beta cotransfection. Biologically, 14-3-3beta/Wee1 coexpression increases the cell population at G2-M phase. Thus, Wee1 binding with 14-3-3beta increases its biochemical activity as well as its biological function. The finding reveals a novel mechanism by which 14-3-3 regulates G2-M arrest and suggests that the NH2-terminal domain of Wee1 contains a negative regulatory sequence that determines Wee1 stability.  相似文献   

20.
Raf-1 serine- and threonine-specific protein kinase is transiently activated in cells expressing the epidermal growth factor (EGF) receptor upon treatment with EGF. The stimulated EGF receptor coimmunoprecipitates with Raf-1 kinase and mediates protein kinase C-independent phosphorylation of Raf-1 on serine residues. Hyperphosphorylated Raf-1 has lower mobility on sodium dodecyl sulfate gels and has sixfold-increased activity in immunocomplex kinase assay with histone H1 or Raf-1 sequence-derived peptide as a substrate. Raf-1 activation requires kinase-active EGF receptor; a point mutant lacking tyrosine kinase activity in inactive in Raf-1 coupling and association. It is noteworthy that tyrosine phosphorylation of c-Raf-1 induced by EGF was not detected in these cells. These observations suggest that Raf-1 kinase may act as an important downstream effector of EGF signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号