首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

2.
Utting M  Hampe J  Platzer M  Huse K 《BioTechniques》2004,37(1):66-7, 70-3
In Pyrosequencing, a DNA strand complementary to a single-stranded DNA (ssDNA) template is synthesized, whereby each incorporated nucleotide yields detectable light, and the light intensity is proportional to the incorporated nucleotides. Correct data interpretation (i.e., signal-to-noise ratio of light intensities) is hampered by artifacts due to the formation of secondary structures of single-stranded templates. Critical among these is the looping back of the template's nonbiotinylated 3' end to itself In the resulting structure, the 3' end functions as a primer, the extension of which results in background signals. We present two ways of preventing the self-priming of a template's 3' end: (i) the use of a modified oligonucleotide, called blOligo, which is complementary to the template's 3' end and (ii) the extension of the template's 3' end with a ddNMP. In contrast to unprotected 3' ends of ssDNA templates, causing inconsistent results, we show that protecting the 3' end of an ssDNA template using either blOligos or ddNMP enables the correct interpretation of signals and results in reliable quantification.  相似文献   

3.
Interactions between rat polymerase beta (pol beta) and the template-primer, as well as gapped DNAs, were studied using the quantitative fluorescence titration technique. Stoichiometries of rat pol beta complexes with DNA substrates are much higher than stoichiometries predicted by the structures of co-crystals. The data can be understood in the context of the two single-stranded (ss)DNA-binding modes of the enzyme, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotides occluded by the protein. The 8-kDa domain of the enzyme engages the double-stranded (ds)DNA downstream from the primer, while the 31-kDa domain has similar affinity for the ss-ds DNA junction and the dsDNA. The affinity of rat pol beta for the gapped DNA is not affected by the size of the gap. The results indicate a plausible model for recognition of the gapped DNA by rat pol beta. The enzyme binds the ss-ds DNA junction of the gap using the 31-kDa domain. This binding induces an allosteric transition, resulting in the association of the 8-kDa domain with the dsDNA, leading to an amplification of the affinity for the gap. The 5' terminal phosphate, downstream from the primer, has little effect on the affinity, but affects the ssDNA conformation of the gap.  相似文献   

4.
The Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824. Since these residues are conserved in the "A" family DNA polymerases, we have designated this region as the RRRY motif. The alanine substitution of individual amino acid residues of this motif did not change the polymerase activity; however, the 3'-5' exonuclease activity was reduced 2-29-fold, depending upon the site of mutation. The R821A and R822A/Y824A mutant enzymes showed maximum cleavage defect with single-stranded DNA, mainly due to a large decrease in the ssDNA binding affinity of these enzymes. Mismatch removal by these enzymes was only moderately affected. However, data from the exonuclease-polymerase balance assays with mismatched template-primer suggest that the mutant enzymes are defective in switching mismatched primer from the polymerase to the exonuclease site. Thus, the RRRY motif provides a binding track for substrate ssDNA and for nonsubstrate single-stranded template overhang, in a polarity-dependent manner. This binding then facilitates cleavage of the substrate at the exonuclease site.  相似文献   

5.
Kinetics of human polymerase beta binding to gapped DNA substrates having single stranded (ss) DNA gaps with five or two nucleotide residues in the ssDNA gap has been examined, using the fluorescence stopped-flow technique. The mechanism of the recognition does not depend on the length of the ssDNA gap. Formation of the enzyme complex with both DNA substrates occurs by a minimum three-step reaction, with the bimolecular step followed by two isomerization steps. The results indicate that the polymerase initiates the association with gapped DNA substrates through the DNA-binding subsite located on the 8-kDa domain of the enzyme. This first association step is independent of the length of the ssDNA gap and is characterized by similar rate constants for both examined DNA substrates. The subsequent, first-order transition occurs at the rate of approximately 600-1200 s(-1). This is the major docking step accompanied by favorable free energy changes in which the 31-kDa domain engages in interactions with the DNA. The 5'-terminal PO(4)(-) group downstream from the primer is not a specific recognition element of the gap. However, the phosphate group affects the enzyme orientation in the complex with the DNA, particularly, for the substrate with a longer gap.  相似文献   

6.
7.
O Rechkoblit  S Amin  N E Geacintov 《Biochemistry》1999,38(36):11834-11843
The binding of the benzo[a]pyrene metabolite anti-BPDE (r7, t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) to the N(2) group of 2'-deoxyguanosine residues (dG) is known to adversely affect the Michaelis-Menten primer extension kinetics catalyzed by DNA Pol I and other polymerases. In this work, the impact of site-specific, anti-BPDE-modified DNA template strands on the formation of Pol I (Klenow fragment, KF)/template-primer complexes has been investigated. The 23-mer template strand 5'-d(AAC GC-(1) T(-)(2) ACC ATC CGA ATT CGC CC), I (dG = (+)-trans- and (-)-trans-anti-BPDE-N(2)-dG), was annealed with primer strands 18, 19, or 20 bases long. Complex formation of these template-primer strands with KF(-) (exonuclease-free) at different enzyme concentrations was determined using polyacrylamide gel mobility shift assays in the absence of dNTPs. The lesion dG causes an increase in the dissociation constants, K(d), of the monomeric, 1:1 KF(-)/DNA template-primer complexes by factors of 10-15 when the 3'-end base of the primer strand is positioned either opposite dG, or opposite dC(-)(1) in I, and the shapes of the binding isotherms are sigmoidal. The sigmoidal shapes are attributed to the formation of dimeric 2:1 KF(-)/DNA template-primer complexes. In contrast, when the 3'-end of the primer strand extends only to dT(-)(2) in I, the K(d) of 1:1 complexes is increased by factors of only 2-3, the shapes of the binding isotherms are hyperbolic and nonsigmoidal and are similar to those observed with the unmodified control, and monomeric KF(-)/DNA complexes are dominant. The impact of bulky lesions on polymerase/DNA complex formation in polymerase-catalyzed primer extension reactions needs to be taken into account in interpreting the site-specific Michaelis-Menten kinetics of these reactions.  相似文献   

8.
M G Kramer  S A Khan    M Espinosa 《The EMBO journal》1997,16(18):5784-5795
Plasmid rolling circle replication involves generation of single-stranded DNA (ssDNA) intermediates. ssDNA released after leading strand synthesis is converted to a double-stranded form using solely host proteins. Most plasmids that replicate by the rolling circle mode contain palindromic sequences that act as the single strand origin, sso. We have investigated the host requirements for the functionality of one such sequence, ssoA, from the streptococcal plasmid pLS1. We used a new cell-free replication system from Streptococcus pneumoniae to investigate whether host DNA polymerase I was required for lagging strand synthesis. Extracts from DNA polymerase I-deficient cells failed to replicate, but this was corrected by adding purified DNA polymerase I. Efficient DNA synthesis from the pLS1-ssoA required the entire DNA polymerase I (polymerase and 5'-3' exonuclease activities). ssDNA containing the pLS1-ssoA was a substrate for specific RNA polymerase binding and a template for RNA polymerase-directed synthesis of a 20 nucleotide RNA primer. We constructed mutations in two highly conserved regions within the ssoA: a six nucleotide conserved sequence and the recombination site B. Our results show that the former seemed to function as a terminator for primer RNA synthesis, while the latter may be a binding site for RNA polymerase.  相似文献   

9.
10.
The fluorescence of the base analogue 2-aminopurine (2AP) was used to detect physical changes in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase. Fluorescent enzyme-DNA complexes were formed with 2AP placed in the template strand opposite the primer terminus (the n position) and placed one template position 5' to the primer terminus (the n + 1 position). The fluorescence enhancement for 2AP at the n position was shown to be due to formation of the editing complex, which indicates that the 2AP-T terminal base pair is recognized primarily as a mismatch. 2AP fluorescence at the n + 1 position, however, was a reporter for DNA interactions in the polymerase active center that induce intrastrand base unstacking. T4 DNA polymerase produced base unstacking at the n + 1 position following formation of the phosphodiester bond. Thus, the increase in fluorescence intensity for 2AP at the n + 1 position could be used to measure the nucleotide incorporation rate in primer extension reactions in which 2AP was placed initially at the n + 2 position. Primer extension occurred at the rate of about 314 s(-1). The amount of base unstacking at the template n + 1 position was sensitive to the local DNA sequence. More base unstacking was detected for DNA substrates with an A-T base pair at the primer terminus compared to C-G or G-C base pairs. Since proofreading is also increased by A-T base pairs compared to G-C base pairs at the primer terminus, we propose that base unstacking may provide an opportunity for the DNA polymerase to reexamine the primer terminus.  相似文献   

11.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction.  相似文献   

12.
DNA ligase D (LigD) participates in a mutagenic pathway of nonhomologous end joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (POL) and a phosphoesterase module. The POL domain performs templated and nontemplated primer extension reactions with either dNTP or rNTP substrates. Here we report that Pseudomonas LigD POL is an unfaithful nucleic acid polymerase. Although the degree of infidelity in nucleotide incorporation varies according to the mispair produced, we find that a correctly paired ribonucleotide is added to the DNA primer terminus more rapidly than the corresponding correct deoxyribonucleotide and incorrect nucleotides are added much more rapidly with rNTP substrates than with dNTPs, no matter what the mispair configuration. We find that 3' mispairs are extended by LigD POL, albeit more slowly than 3' paired primer-templates. The magnitude of the rate effect on mismatch extension varies with the identity of the 3' mispair, but it was generally the case that mispaired ends were extended more rapidly with rNTP substrates than with dNTPs. These results lend credence to the suggestion that LigD POL might fill in short 5'-overhangs with ribonucleotides when repairing double strand breaks in quiescent cells. We report that LigD POL can add a deoxynucleotide opposite an abasic lesion in the template strand, albeit slowly. Ribonucleotides are inserted more rapidly at an abasic lesion than are deoxys. LigD POL displays feeble activity in extending a preformed primer terminus opposing an abasic site, but can readily bypass the lesion by slippage of the primer 3' di- or trinucleotide and realignment to the template sequence distal to the abasic site. Covalent benzo[a]pyrene-dG and benzo[c]phenanthrene-dA adducts in the template strand are durable roadblocks to POL elongation. POL can slowly insert a dNMP opposite the adduct, but is impaired in the subsequent extension step.  相似文献   

13.
14.
The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.  相似文献   

15.
DNA polymerase X (pol X) from African swine fever virus (ASFV) is the smallest naturally ocurring DNA-directed DNA polymerase (174 amino acid residues) described so far. Previous biochemical analysis has shown that ASFV pol X is a highly distributive, monomeric enzyme, lacking a proofreading 3'-5' exonuclease. Also, ASFV pol X binds intermediates of the single-nucleotide base excision repair (BER) process, and is able to efficiently repair single-nucleotide gapped DNA. In this work, we perform an extensive kinetic analysis of single correct and incorrect nucleotide insertions by ASFV pol X using different DNA substrates: (i) a primer/template DNA; (ii) a 1nt gapped DNA; (iii) a 5'-phosphorylated 1nt gapped DNA. The results obtained indicate that ASFV pol X exhibits a general preference for insertion of purine deoxynucleotides, especially dGTP opposite template C. Moreover, ASFV pol X shows higher catalytic efficiencies when filling in gapped substrates, which are increased when a phosphate group is present at the 5'-margin of the gap. Interestingly, ASFV pol X misinserts nucleotides with frequencies from 10(-4) to 10(-5), and the insertion fidelity varies depending on the substrate, being more faithful on a phosphorylated 1nt gapped substrate. We have analyzed the capacity of ASFV pol X to act on intermediates of BER repair. Although no lyase activity could be detected on preincised 5'-deoxyribose phosphate termini, ASFV pol X has lyase activity on unincised abasic sites. Altogether, the results support a role for ASFV pol X in reparative BER of damaged viral DNA during ASFV infection.  相似文献   

16.
Srivastava A  Singh K  Modak MJ 《Biochemistry》2003,42(13):3645-3654
To identify the sites in the Klenow fragment of Escherichia coli DNA polymerase I that interact with the ssDNA overhang of the template strand in the pre-polymerase ternary complex, we carried out UV-mediated photo-cross-linking of the enzyme-DNA-dNTP ternary complex. The template strand contained a nine-nucleotide overhang and was radiolabeled at the 5'-end. Since the enzyme-TP-dNTP ternary complex but not the E-TP binary complex is stable at high ionic strengths, the cross-linking was carried out in the presence of 0.5 M NaCl. The cross-linked E-TP-dNTP complex was purified and subjected to trypsin digestion. The radiolabeled TP cross-linked peptide was further purified by DEAE-Sepharose and C18 column chromatography and subjected to amino acid sequencing. The release of radiolabeled DNA during each sequencing cycle was also monitored. The sequencing results as well as the radioactivity release pattern show that F771, contained in a peptide spanning amino acids 759-775 of pol I, is the unequivocal site of the template cross-linking. A qualitative assessment of the cross-linking efficiency of the template overhang containing a TT sequence at different positions in the ternary complex further suggests that the major cross-linking site within the template overhang is at the second and/or third nucleotide. An examination of the F771A mutant enzyme showed that it was able to form the E-TP binary as well as E-TP-dNTP ternary complex; however, it could not cross-link to the template-primer in the ternary complex. Furthermore, the ternary complex with F771A was qualitatively defective and exhibited some salt sensitivity. These results suggest that F771 participates in the stabilization of the pre-polymerase ternary complex.  相似文献   

17.
18.
19.
This report describes the results of our initial enzymological characterization of a homogeneous preparation of DNA polymerase alpha that we have purified from cultured human KB cells. Although the enzyme is most reactive with duplex DNA substrates that contain short gaps (optimally activated) in incubations that require Mg2+, the polymerase possesses the intrinsic capacity to copy the initiated ribohomopolymer template, (A)-n, (dT)-200, at low rates in the presence of Mn2+. Because of the preponderance of DNA polymerase alpha in actively multiplying vertebrate cells, it is probable that this low level of activity comprises the majority of the ribopolymer copying activity that can be detected in crude tissue extracts. The presence of contaminating or associated deoxyribonuclease activities can be excluded from the purified enzyme to levels of 10(-4) to 10(-7) of the polymerase activity. The mechanism of polymerization on activated DNA under optimum conditions is moderately processive, with 11 +/- 5 nucleotides incorporated per polymerization cycle. The polymerase is unable to work at nicks or at short gaps of approximately 20 to 30 nucleotides in length, and it measures a surprisingly invariant effective template length on optimally activated DNA and on DNA molecules that have been gapped to varying extents with Escherichia coli exonuclease III. In the "Appendix" we present an amplification of the theoretical formulation of Bambara et al. (Bambara, R. A., Uyemura, D., and Choi, T. (1978) J. Biol. Chem. 253, 413--423) that permits the use of DNA polymerases with significant associated 3' leads to 5'-exonuclease activities for the accurate measurement of average template lengths (gap sizes) and titration of usable 3'-hydroxyl primer termini in gapped, duplex DNA substrates.  相似文献   

20.
García PB  Robledo NL  Islas AL 《Biochemistry》2004,43(51):16515-16524
DNA polymerases use an uninterrupted template strand to direct synthesis of DNA. However, some DNA polymerases can synthesize DNA across two discontinuous templates by binding and juxtaposing them, resulting in synthesis across the junction. Primer/template duplexes with 3' overhangs are especially efficient substrates, suggesting that DNA polymerases use the overhangs as regions of microhomology for template synapsis. The formation of these overhangs may be the result of non-template-directed nucleotide addition by DNA polymerases. To examine the relative magnitude and mechanism of template switching, we studied the in vitro enzyme kinetics of template switching and non-template-directed nucleotide addition by the 3'-5' exonuclease-deficient large fragment of Escherichia coli DNA polymerase I. Non-template-directed nucleotide addition and template switching were compared to that of standard primer extension. We found that non-template-directed nucleotide addition and template switching showed similar rates and were approximately 100-fold slower than normal template-directed DNA synthesis. Furthermore, non-template-directed nucleotide addition showed a 10-fold preference for adding dAMP to the ends of DNA over that of the other three nucleotides. For template switching, kinetic analysis revealed that the two template substrates acted as a random bireactant system with mixed-type inhibition of substrate binding by one substrate over the other. These data are the first to establish the binding kinetics of two discontinuous DNA substrates to a single DNA polymerase. Our results suggest that although the activities are relatively weak, non-template-directed nucleotide addition and template switching allow DNA polymerases to overcome breaks in the template strand in an error-prone manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号