首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollination of one plant species can be facilitated by the presence of one or more neighboring plant species and evidence has been found in some rewardless species of orchid that benefit from the presence of rewarding plant species in the neighborhood. There are two pollination mechanisms by which a non-rewarding orchid attracts pollinators and increases its reproductive success: (1) A magnetic species effect that occurs even though the flowers do not resemble those of the other species, and (2) floral mimicry where the mimic’s flower resembles that of the model plant species. Oncidium cosymbephorum is a Mexican rewardless epiphytic orchid whose flowers look like those of the rewarding shrub Malpighia glabra (Malpighiaceae). The resemblance of O. cosymbephorum to the oil-offering flowers of M. glabra attracts the same pollinators, and the fitness of the orchid is higher when M. glabra is present than when it is absent. We evaluated the facilitation by M. glabra of the orchid’s pollination for natural and artificial clumps of O. cosymbephorum close to and far from M. glabra over 4 years. Two experiments were performed at five different study sites to evaluate the effect of the presence and absence of M. glabra on the reproductive success of O. cosymbephorum. In experiment 1, we recorded fruit set production in natural and artificial monospecific clumps of the orchid, and in natural and artificial heterospecific clumps of O. cosymbephorum and M. glabra. In experiment 2, we recorded the fruit set of O. cosymbephorum at different sites where individuals grow in monospecific clumps, both before and after cultivated individuals of oil-producing M. glabra had been planted in their vicinity. Both experiments showed that the reproductive success of O. cosymbephorum was greater in the presence of M. glabra than it was in its absence. This study provides experimental evidence for the magnetic species effect. Floral similarity between O. cosymbephorum and M. glabra, should be experimentally tested to determine whether it is adaptive.  相似文献   

2.
Insect herbivory has variable effects on plant physiology; so greater understanding is needed about how injury alters photosynthesis on individual injured and uninjured leaves. Gas exchange and light-adapted leaf chlorophyll fluorescence measurements were collected from uninjured and mechanical partial leaf defoliation in two experiments with Nerium oleander (Apocynaceae) leaves, and one experiment with Danaus plexippus herbivory on Asclepias curassavica (Asclepiadaceae) leaves. Gas exchange impairment (lower photosynthetic rate (P n ), stomatal conductance (g s)) indicates water stress in a leaf, suggests stomatal limitations causing injury P n impairment. The same pattern of gas exchange impairment also occurred on uninjured leaves opposite from injured leaves in both N. oleander experiments. This is an interesting result because photosynthetic impairment is rarely reported on injured leaves near injured leaves. No photosynthetic changes occurred in uninjured A. curassavica leaves opposite from D. plexippus-fed leaves. Partially defoliated leaves that had P n and g s reductions lacked any significant changes in intercellular leaf [CO2], C i. These results neither support, nor are sufficient to reject, stomatal limitations to photosynthesis. Manually imposed midrib vein severance in N. oleander experiment #1 significantly increased leaf C i, indicating mesophyll limitations to photosynthesis. Maximal light-adapted leaf photochemical efficiency () and also non-photochemical quenching (q N) were reduced by mechanical or insect herbivory to both study species, suggesting leaf trouble handling excess light energy not used for photochemistry. Midrib injury on N. oleander leaves and D. plexippus herbivory on A. curassavica leaves also reduced effective quantum yield (ΦPSII) and photochemical quenching (q P); so reduced plastoquinone pools could lead to additional PSII reaction center closure.  相似文献   

3.
Goss EM  Bergelson J 《Oecologia》2007,152(1):71-81
Variation in plant resistance to pathogen infection is commonly observed in interactions between wild plants and their foliar pathogens. Models of host–pathogen interactions indicate that a large cost of infection is generally necessary to maintain this variation, yet there is limited evidence that foliar pathogens cause detectable fitness reductions in wild host plants. Most published work has focused on fungal pathogens. Pseudomonas viridiflava, a common bacterial pathogen of the annual weed Arabidopsis thaliana across its range, comprises two distinct genetic clades that cause disease symptoms of different severity. Here we measured the extent of infection of wild A. thaliana populations in the Midwest, USA, and examined the effect on seed production, in field and growth-chamber experiments, of experimental inoculation with isolates from the two clades. We found infection with P. viridiflava varied from 0 to 56% in Midwest A. thaliana populations, with the possibility of several leaves per plant infected later in the growing season. In the growth chambers, experimental inoculation reduced seed set by averages of 15 and 11% for clades A and B, respectively. In the field experiment, only clade A affected plant fitness significantly, reducing seed set by an average of 38%. Underlying these average effects we observed both negative and positive effects of infection, and variation in both fitness among plant genotypes and sensitivity to environmental conditions.  相似文献   

4.
Bacterial spot caused by Xanthomonas spp. is an important tomato and pepper disease worldwide. Recent outbreaks of bacterial spot disease in Central Brazil and Canada have been attributed to Xanthomonas gardneri, which is also recognized as group D of Xanthomonas campestris pv. vesicatoria. Carotenoid-like pigments called xanthomonadins, which are diagnostic for yellow Xanthomonas spp., were extracted from X. gardneri. It was shown that the model plant Arabidopsis thaliana, member of the Brassicaceae family, can develop disease symptoms in response to different isolates of X. gardneri. Secretion of enzymes has been shown to play an important role in pathogenicity for different pathogens, and to begin to understand the interaction of X. gardneri and A. thaliana, a biochemical analysis of secreted proteins in the presence of A. thaliana leaves was performed. Different enzymatic activities such as for cellulase, α-arabinofuranosidase, pectinase, invertase and xylanase were assayed. In the presence of leaves, cellulase activity was highest after 60 and 72 h of growth and α-arabinofuranosidase activity was detected between 12 and 72 h of growth. Pectinase, invertase and xylanase activities were not detected. Cellulase and α-arabinofuranosidase activities may be important for X. gardneri acquisition of plant nutrients through degradation of cellulose fibers and hemicellulose of the cell wall, respectively, to the invasion of the host tissue and/or may generate signal molecules that are recognized by the plant. This is the first study to address how X. gardneri responds to host plant tissue.  相似文献   

5.
The reserve ovary model is a key hypothesis proposed to explain why plants produce surplus flowers and posits that plants may utilize surplus flowers to compensate for losses from floral herbivory. We tested this hypothesis in the prairie plant Eryngium yuccifolium and its floral herbivore Coleotechnites eryngiella. At five Illinois tallgrass prairie sites, we collected central, primary lateral, and secondary lateral inflorescences from E. yuccifolium to determine whether damage by the larvae of C. eryngiella to the flowers in earlier developing inflorescences would be compensated for in later developing inflorescences. Coleotechnites eryngiella does extensive damage to the central and primary inflorescences and little damage to the secondary inflorescences. Later maturing inflorescences did not compensate for early damage by increasing seed production in later inflorescences. The secondary inflorescences of E. yuccifolium may only compensate for catastrophic damage done to the central and primary inflorescences early on in development, serve as additional advertisements for pollinators, act as pollen donors, or allow the plant to take advantage of “ecological windows” of high pollinator and low herbivore abundance. Our findings were spatially and temporally consistent and did not support the predictions of the reserve ovary model in the E. yuccifoliumC. eryngiella system suggesting that in this system, alternate, proximate, and ultimate causes need to be explored for the production of surplus flowers.  相似文献   

6.
Birschwilks M  Sauer N  Scheel D  Neumann S 《Planta》2007,226(5):1231-1241
Arabidopsis thaliana and Cuscuta spec. represent a compatible host–parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host–parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP–ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP–ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP–ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.  相似文献   

7.
Irwin RE  Brody AK 《Oecologia》2011,166(3):681-692
Many antagonistic species attack plants and consume specific plant parts. Understanding how these antagonists affect plant fitness individually and in combination is an important research focus in ecology and evolution. We examined the individual and combined effects of herbivory, nectar robbing, and pre-dispersal seed predation on male and female estimates of fitness in the host plant Ipomopsis aggregata. By examining the effects of antagonists on plant traits, we were able to tease apart the direct consumptive effects of antagonists versus the indirect effects mediated through changes in traits important to pollination. In a three-way factorial field experiment, we manipulated herbivory, nectar robbing, and seed predation. Herbivory and seed predation reduced some male and female fitness estimates, whereas plants tolerated the effects of robbing. The effects of herbivory, robbing, and seed predation were primarily additive, and we found little evidence for non-additive effects of multiple antagonists on plant reproduction. Herbivory affected plant reproduction through both direct consumptive effects and indirectly through changes in traits important to pollination (i.e., nectar and phenological traits). Conversely, seed predators primarily had direct consumptive effects on plants. Our results suggest that the effects of multiple antagonists on estimates of plant fitness can be additive, and investigating which traits respond to damage can provide insight into how antagonists shape plant performance.  相似文献   

8.
Volcanic activity provides an indispensable opportunity to study the ecological responses of organisms to environmental devastation. We examined the reproductive success of Camellia trees to identify how volcanic activity affects the processes of leaf survival, flowering activity, fruit and seed production, pollinator abundance, pollinator visitation frequency, pollination rate, and fruit and seed maturation at different damage sites on Miyake-jima, which experienced an eruption in the summer of 2000. Volcanic gases negatively affect leaf survival and reduce flowering activity in heavily damaged areas. Pollen transfer was sufficient to ensure that higher pollination rates (83%) occurred in heavily damaged areas than in less damaged areas (26–45%), but pollinator densities were lower in response to reduced flower resources. Fruit abortion rates were greater in heavily damaged sites (78%) than in less-damaged sites (53–63%). Consequently, fruit-set rates (16–29%) did not differ significantly among sites. Seed set rates tended to increase with increasing volcanic damage. The negative correlation between seed-set rates and seed mass suggests that the decreased seed mass in severely damaged sites was attributable to the better pollination rates observed there. These results indicate that compensation mechanisms ensure better reproductive success at sites that are more strongly affected by volcanic activity.  相似文献   

9.
Correlation between plant size and reproductive output may be modified by herbivory in accordance with host plant density and the presence of nonhost plants. To elucidate the effects of nonhost plant density and host plant density on the intensity of herbivory and reproductive output of the host plant in relation to plant size under natural conditions, we investigated the abundance of three lepidopteran insects, Plutella maculipennis, Anthocharis scolymus, and Pieris rapae the intensity of herbivory, and fruit set of their host plant, Turritis glabra (Cruciferae). To elucidate the effects of nonhost and host plant density, we selected four categories of plots under natural conditions: low density of nonhost and high density of host plants; low density of both nonhost and host plants; high density of both nonhost and host plants; and high density of nonhost and low density of host plants. The plant size indicated by stem diameter was a good predictor of the abundance of all herbivorous species. The effects of density of nonhost and host plants on the abundance of insects varied among species and stages of insects. As the abundance of insects affected the intensity of herbivory, herbivory was more apparent on larger host plants in plots with low density of both nonhost and host plants. Consequently, the correlation between plant size and the number of fruits disappeared in low plots with density of both nonhost and host plants. In this T. glabra– herbivorous insect system, the density of nonhost plants and host plants plays an important role in modifying the relationship between plants and herbivores under natural conditions. Received: July 19, 1999 / Accepted: June 15, 2000  相似文献   

10.
Summary. A novel practical method for the synthesis of N-methyl-DL-aspartic acid 1 (NMA) and new syntheses for N-methyl-aspartic acid derivatives are described. NMA 1, the natural amino acid was synthesized by Michael addition of methylamine to dimethyl fumarate 5. Fumaric or maleic acid mono-ester and -amide were regioselectively transformed into beta-substituted aspartic acid derivatives. In the cases of maleamic 11a or fumaramic esters 11b, the α-amide derivative 13 was formed, but hydrolysis of the product provided N-methyl-DL-asparagine 9 via base catalyzed ring closure to DL-α-methylamino-succinimide 4, followed by selective ring opening. Efficient methods were developed for the preparation of NMA-α-amide 13 from unprotected NMA via sulphinamide anhydride 15 and aspartic anhydride 3 intermediate products. NMA diamide 16 was prepared from NMA dimethyl ester 6 and methylamino-succinimide 4 by ammonolysis. Temperature-dependent side reactions of methylamino-succinimide 4 led to diazocinone 18, resulted from self-condensation of methylamino-succinimide via nucleophyl ring opening and the subsequent ring-transformation.  相似文献   

11.
Habitat fragmentation poses a major threat to the viability of plant populations. However, the intensity of fragmentation effects may vary among years. We studied two possible effects of habitat fragmentation (patch size and isolation) on the reproduction and proportion of damaged fruits in 24 patches of the self-compatible shrub Colutea hispanica for three consecutive years with different climate conditions. We also studied the effect of fragmentation on the incidence of two main pre-dispersal seed predators, the butterflies Iolana iolas and Lampides boeticus. High between-year variability was found in number of viable seeds per fruit, number of fruits per plant, total number of viable seeds per plant and proportion of damaged fruits. In 2003, small, isolated patches had a higher fruit set and number of fruits per plant. The proportion of damaged fruits was significantly lower in isolated populations in 2003, while it was very high in all patches in 2004 and 2005. High between-year variability was also found in the proportion of fruits per plant with I. iolas eggs. In 2003 isolated patches had a lower proportion of fruits with I. iolas eggs, but no significant effect of patch size and isolation was found in 2004 or 2005. The proportion of fruits with L. boeticus eggs was similar in the three years of study, although it was slightly higher in large, non-isolated patches in 2003. Thus, the effects of fragmentation on plant reproduction cannot be generalized from one single-year survey. In contrast to the generally accepted idea that fragmentation reduces plant reproduction, plant fitness may increase in isolated patches in years with high fruit production and low seed predation.  相似文献   

12.
The relationship between Sporidiobolus johnsonii and S. salmonicolor was investigated using rDNA sequence data. Two statistically well-supported clades were obtained. One clade included the type strain of S. johnsonii and the other included the type strain of S. salmonicolor. However, some mating strains of S. salmonicolor were found in the S. johnsonii group. These strains belonged to mating type A2 and were sexually compatible with mating type A1 strains from the S. salmonicolor group. DNA–DNA reassociation values were high within each clade and moderate between the two clades. In the re-investigation of teliospore germination, we observed that the basidia of S. salmonicolor were two-celled. In S. johnsonii, basidia were not formed and teliospore germination resulted in direct formation of yeast cells. We hypothesize that the S. johnsonii clade is becoming genetically isolated from the S. salmonicolor group and that a speciation process is presently going on. We suspect that the observed sexual compatibility between strains of the S. johnsonii and S. salmonicolor groups and the possible genetic flow between the two species has little biological relevance because distinct phenotypes have been fixed in the two taxa and intermediate (hybrid) sequences for LSU and ITS rDNAs have not been detected. An erratum to this article can be found at  相似文献   

13.
In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa × alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the ’unvegetated areas’. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.  相似文献   

14.
The biomagnification of methylmercury (MeHg) amongst trophic levels results in high levels of this compound in many freshwater fish species. The role of parasites in MeHg cycling and trophic transfer in freshwater systems is largely unknown. This study examined the potential for metacercariae of Apophallus brevis to accumulate and biomagnify MeHg from their second intermediate host, yellow perch, Perca flavescens. Contrary to our prediction that MeHg levels would be higher in parasites than in the host muscle tissue in which they are embedded, we found that concentrations were similar. The lack of increase in MeHg levels from host to parasite may be due to limited assimilation of host muscle tissue or, in part, to low parasite metabolism. Parasite load did not reduce fish growth and subsequently alter MeHg concentrations. This study suggests that relationships between larval parasites and their hosts do not conform to typical patterns of MeHg biomagnification seen in aquatic systems.  相似文献   

15.
Common yew (Taxus baccata L.) stands are recognized as prioritary habitats for biodiversity conservation within the European Union. The effects of browsing on the regeneration capacity and spatial dispersal of T. baccata recruits at the European southern limit of the species in the Mediterranean Basin have been herein studied. The efficacy of T. baccata recruitment has been evaluated at six localities in the Northern Sardinia mountains, which have similar altitude, climate, soil, and vegetation but have different types of uses (three were grazed by livestock and three were not). At each site, five habitats have been identified for T. baccata seed dispersal: reproductive female T. baccata canopy, reproductive female Ilex aquifolium canopy, non-fleshy-fruited tree canopy, fleshy-fruited shrubs, and open areas. The density of seedlings was found to be greater under fleshy-fruited trees (reproductive female T. baccata and I. aquifolium) than under shrubs, whereas the sapling density was higher in shrubby habitats, especially at grazed sites due to the mechanical protection afforded by the spiny shrubs against herbivores. Land use (LU) has been found to be the most important factor in determining the spatial distribution of seedlings and saplings in relation to forest habitats. Although browsers had an ephemeral but positive effect on seed germination through their trampling and the resultant scarification, this process eventually became ineffective as was shown by the occurrence of the lowest density of saplings in those habitats where the density of seedlings was the highest. The ultimate and most important effect of browsing was the sharp decrease in the density of saplings, and their almost complete extinction, in non-shrubby habitats. This study highlights the result that, in Mediterranean ecosystems, browsing constitutes the main negative factor on T. baccata seedling-sapling transition and furthermore confirms the necessity to preserve shrubby patches in the vicinity of reproductive female T. baccata and I. aquifolium to permit the regeneration of T. baccata in the presence of livestock. Moreover, at ungrazed sites, T. baccata is able to colonize non-shrubby shady habitats. The application of different management strategies to ungrazed and grazed sites should therefore be the main direction in the management and preservation of T. baccata stands in the Mediterranean region.  相似文献   

16.
Summary. Polyamines, in particular spermine, as well as some natural and synthetic polyamine derivatives have been found to be blockers of N-methyl-d-aspartate receptors. We developed novel, polyamine-based channel blockers to analyze the structure of NMDA receptors. Anthraquinone polyamines block NMDA receptors with some selectivity compared to other glutamate receptors. Results using mutant NR1 and NR2 subunits identified amino acid residues that influence blockade by anthraquinone polyamines. The head group (anthraquinone) may be positioned at the selectivity filter/narrowest constriction of the channel and the polyamine tail penetrates this constriction into the inner vestibule below the level of the selectivity filter. The results are consistent with other work showing that NR1 (Asn616) and NR2B (Asn616), but not NR2B (Asn615), make the narrowest constriction of NMDA channel, and that the M3 segments from the two subunits, which form the outer vestibule, are likely staggered relative to each other in the vertical axis of the channel.  相似文献   

17.
Summary. Hydrogensquarates of dipeptide l-threonyl-l-serine (H-Thr-Ser-OH) and l-serine (HSq × Ser) have been synthesized, isolated and spectroscopic characterized by solid-state linear-polarized IR-spectroscopy, 1H- and 13C-NMR, ESI-MS and HPLC with tandem masspectrometry (MS-MS) methods. The structures of the salts and neutral dipeptide have been predicted theoretically by ab initio calculations. In the case of H-Thr-Ser-OH the theoretical data are supported by IR-LD ones. The hydrogensquarates consist in positive charged dipeptide or amino acid moiety and negative hydrogensquarate anion (HSq) stabilizing by strong intermolecular hydrogen bonds. The data about the l-serine hydrogensquarate are compared with known crystallographic data thus indicating a good correlation between the theoretical predicted structures and experimentally obtained by single crystal X-ray diffraction.  相似文献   

18.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

19.
Summary. Arabino-Galactan Proteins (AGPs) were isolated from Chios mastic gum (CMG) by using a buffer containing 0.1 M NaCl, 20 mM Tris–HCl, pH 7.5. Protein analytical methods, combined with specific procedures for carbohydrate characterization, indicated the presence of highly glycosylated protein backbone. In particular, staining by Yariv reagent of the electrophoretically separated molecules revealed the existence of arabinose and galactose and such a modification is characteristic for AGPs. After experiments involving extensive dialysis of the isolated extracts against water and atomic absorption, there was evidence of the existence of zinc ions that are probably covalently bound to the AGPs. By using anion-exchange chromatography, capillary electrophoresis, colorimetric methods and GC-MS, it was found that the extracts were separated into three major populations (A, B, and C), which were consistent with their respective negative charge content namely, uronic acid. The characterization of neutral sugars that was investigated with GC-MS showed the existence of arabinose and galactose in different amounts for each group. Experiments concerning the inhibition of growth of Helicobacter pylori in the presence of AGPs, as is shown for other CMG constituents, showed that the extracts of at least 1.4 g CMG affected the viability of the bacterium. There is no evidence as to whether the AGPs provoke abnormal morphologies of H. pylori, as is reported for the total CMG, or for O-glycans that possess terminal α1, 4-linked N-acetylglucosamine and are expressed in the human gastric mucosa; this has to be further investigated. Authors’ address: Theodora Choli-Papadopoulou, Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, TK 54124 Thessaloniki, Greece  相似文献   

20.
Oshima T 《Amino acids》2007,33(2):367-372
Summary. Recent research progress on polyamines in extreme thermophiles is reviewed. Extreme thermophiles produce two types of unique polyamines; one is longer polyamines such as caldopentamine and caldohexamine, and the other is branched polyamines such as tetrakis(3-aminopropyl)ammonium. The protein synthesis catalyzed by a cell-free extract of Thermus thermophilus, an extreme thermophile, required the presence of a polyamine and the highest activity was found in the presence of tetrakis(3-aminopropyl)ammonium. In vitro experiments, longer polyamines efficiently stabilized double stranded nucleic acids and a branched polyamine, tetrakis(3-aminropyl)ammonium, stabilized stem-and-loop structures. In T. thermophilus, polyamines are synthesized from arginine by a new metabolic pathway; arginine is converted to agmatine and then agmatine is aminopropylated to N1-aminopropylagmatine which is converted to spermidine by an enzyme coded by a gene homologous to speB (a gene for agmatinase). In this new pathway spermidine is not synthesized from putrescine. Reverse genetic studies indicated that the unique polyamines are synthesized from spermidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号