首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Volume expansion and inotropic stimulation are used clinically to augment cardiac output during acute right ventricular (RV) pressure overload. We previously showed that a brief period of RV pressure overload causes RV free wall dysfunction that persists after normal loading conditions have been restored. However, the impact of volume expansion and inotropic stimulation on the severity of RV dysfunction after acute pressure overload is unknown. We hypothesized that the severity of RV dysfunction after RV pressure overload would be related to the level of RV free wall systolic stress during RV pressure overload, rather than to the specific interventions used to augment RV function. Chloralose-anesthetized, open-chest pigs were subjected to 1 h of RV pressure overload caused by pulmonary artery constriction, followed by 1 h of recovery after release of pulmonary artery constriction. A wide range of RV free wall systolic stress during RV pressure overload was achieved by either closing or opening the pericardium (to simulate volume expansion) and by administering or not administering dobutamine. The severity of RV free wall dysfunction 1 h after RV pressure overload was strongly and directly correlated with the values of two hemodynamic variables during RV pressure overload: RV free wall area at peak RV systolic pressure (determined by sonomicrometry) and peak RV systolic pressure, two of the major determinants of peak RV free wall systolic stress. Opening or closing the pericardium, and using or not using dobutamine during RV pressure overload, had no independent effects on the severity of RV dysfunction. The findings suggest that the goal of therapeutic intervention during RV pressure overload should be to achieve the required augmentation of cardiac output with the smallest possible increase in RV free wall systolic stress.  相似文献   

4.
5.
6.
Staves MP  Wayne R  Leopold AC 《Protoplasma》1992,168(3-4):141-152
Summary Hydrostatic pressure applied to one end of a horizontalChara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.  相似文献   

7.
8.
9.
10.
11.
The gelatinization process of waxy corn starch under different pressures up to 10.0 MPa was investigated using a high pressure DSC. Compressed air and carbon dioxide were used as pressure resources. Effect of pressure and annealing under pressure on gelatinization of waxy corn starch was systematically studied, in particular on the gelatinization temperature and enthalpy. The results show that the peak temperature of gelatinization was increased slightly initially then remained stable with increasing pressure. The gelatinization enthalpy was decreased under pressure processing. Annealing the starch under pressure condition, just below its gelatinization temperature, increased gelatinization temperature but kept gelatinized enthalpy constant. Morphologies of starch granules treated under pressure were studied using an optical microscope and SEM. There is no discernable difference of starch granules treated with and without pressure, which indicates the pressures are not high enough to destroy crystalline structure. The intensity of the pressure acts as a key factor to influence the gelatinization of starch rather than the nature of the gas. Effect of pressure on the multi-endotherm detected by DSC for starch with intermediate water is used to study the mechanisms. The effect of pressure can be explained by the enhancement of water diffusion in the amorphous range.  相似文献   

12.
13.
14.
Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP) is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP). An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine) Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion), moderate (∼100 mmHg, saline), or high levels (∼160 mmHg, angiotensin II) of mean arterial pressure (MAP, n = 5–10 per group) were subjected to IOP challenge (10–120 mmHg, 5 mmHg steps every 3 minutes). Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave) and inner retinal function (scotopic threshold response or STR). Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow.  相似文献   

15.
16.
In earlier work tobacco leaves were placed in a Scholander-Hammel pressure bomb and the end of the petiole sealed with a pressure transducer in order to measure pressure transmission from the compressed gas (Pg) in the bomb to the xylem fluid (Px). Pressure bomb theory would predict a 1:1 relationship for Pg:Px when tobacco leaves start at a balance pressure of zero. Failure to observe the expected 1:1 relationship has cast doubt on the pressure-bomb technique in the measurement of the xylem pressure of plants. The experimental and theoretical relationship between Px and Pg was investigated in Tsuga canadensis (L) branches and Nicotiana rustica (L) leaves in this paper. It is concluded that the non 1:1 outcome was due to the compression of air bubbles in embolized xylem vessels, evaporation of water from the tissue, and the expansion of the sealed stem segment (or petiole) protruding beyond the seal of the pressure bomb. The expected 1:1 relationship could be obtained when xylem embolism was eliminated and stem expansion prevented. It is argued that the non 1:1 relationship in the positive pressure range does not invalidate the Scholander pressure bomb method of measuring xylem pressure in plants because Px never reaches positive values during the determination of the balance pressure.  相似文献   

17.
Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of −0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435–444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.  相似文献   

18.
19.
A large amplitude blood pressure oscillation occurs during social defeat in a territorial fight between male rats, and during the application of a psychosocial stimulus associated with this defeat. Synchronous recording of blood pressure, intrathoracic pressure and diaphragm activity shows that the blood pressure oscillation coincides with a typical respiratory pattern called 'pressure breathing', during which a strongly positive intrathoracic pressure with expiration can be observed. The expiration was relatively prolonged and accompanied by a rise in blood pressure and a decrease in heart frequency. These alterations outlast the applied social respectively psychosocial stimulations. The results of this study suggest that behaviorally induced pressure breathing is of importance to attentional processes during social stimulation. The contribution to the development of hypertension is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号