首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G C Overton  E S Weinberg 《Cell》1978,14(2):247-257
Histone gene repeats in S. purpuratus are shown to be of variable length and sequence. Two recombinant plasmids containing the full-length 6.3 kb histone repeat unit are found to differer in length at two sites in the repeating structure and in the occurrence of two restriction enzyme recognition sites. Variation in repeat length is also demonstrated in the unfractionated DNA of five sea urchins and in a sample of DNA enriched for histone gene sequences by density gradient methods. The repeats in each individual are of a very limited number of major classes, which may differ from one another in overall length or in distribution and presence of particular restriction enzyme sites. Variations are found to occur at many regions of the repeat; some have been mapped specifically to spacer regions. Repeats may differ dramatically from individual to individual since there is no one type of repeat class common to all, although the absolute length differences of the repeats that are found are small.  相似文献   

2.
The genetic polymorphism and the biotype identity of the tobacco whitefly Bemisia tabaci (Gennadius) have been studied in population samples taken from different localities within Greece from cultivated plants growing in greenhouses or in open environments and from non-cultivated plants. Two different approaches were used: sequencing of the mitochondrial cytochrome oxidase I (mtCOI) gene and genotyping using microsatellite markers. Analyses of the mtCOI sequences revealed a high homogeneity between the Greek samples which clustered together with Q biotype samples that had been collected from other countries. When genetic polymorphism was examined using six microsatellite markers, the Greek samples, which were all characterized as Q biotype were significantly differentiated from each other and clustered into at least two distinct genetic populations. Moreover, based on the fixed differences revealed by the mtCOI comparison of known B. tabaci biotype sequences, two diagnostic tests for discriminating between Q and B and non-Q/non-B biotypes were developed. Implementation of these diagnostic tools allowed an absence of the B biotype and presence of the Q biotype in the Greek samples to be determined.  相似文献   

3.
4.
Two demographic scenarios are considered: two populations with migration and two populations that have been completely isolated from each other for some period of time. The variance of the number of differences between pairs of sequences in a single sample is studied and forms the basis of a test of the isolation model. The migration model is one possible alternative to isolation. The isolation model is rejected when the proposed test statistic, which involves the variances of pairwise difference within and between populations, is larger than some critical value. The power and realized significance of the test are investigated using simulations, and an example using mitochondrial DNA illustrates its application.  相似文献   

5.
Aquatic macroinvertebrates are commonly used biological indicators for assessing the health of freshwater ecosystems. However, counting all the invertebrates in the large samples that are usually collected for rapid site assessment is time-consuming and costly. Therefore, sub-sampling is often done with fixed time or fixed count live-sorting in the field or with preserved material using sample splitters in the laboratory. We investigate the differences between site assessments provided when the two sub-sampling approaches (Live-sort and Lab-sort) were used in conjunction with predictive bioassessment models. The samples showed a method bias. The Live-sort sub-samples tended to have more large, conspicuous invertebrates and often fewer small and, or cryptic animals that were more likely to be found in Lab-sort samples where a microscope was used. The Live-sort method recovered 4–6 more taxa than Lab-sorting in spring, but not in autumn. The magnitude of the significant differences between Live-sort and Lab-sort predictive model outputs, observed to expected (O/E) taxa scores, for the same sites ranged from 0.12 to 0.53. These differences in the methods resulted in different assessments of some sites only and the number of sites that were assessed differently depended on the season, with spring samples showing most disparity. The samples may differ most in spring because many of the invertebrates are larger at that time (and thus are more conspicuous targets for live-sorters). The Live-sort data cannot be run through a predictive model created from Lab-sort data (and vice versa) because of the taxonomic differences in sub-sample composition and the sub-sampling methods must be standardized within and among studies if biological assessment is to provide valid comparisons of site condition. Assessments that rely on the Live-sorting method may indicate that sites are ‘less impaired’ in spring compared to autumn because more taxa are retrieved in spring when they are larger and more visible. Laboratory sub-sampling may return fewer taxa in spring, which may affect assessments relying on taxonomic richness.  相似文献   

6.
7.
Origin and differentiation of human mitochondrial DNA.   总被引:10,自引:3,他引:7       下载免费PDF全文
A recent study of mitochondrial DNA (mtDNA) polymorphism has generated much debate about modern human origins by proposing the existence of an "African Eve" living 200,000 years ago somewhere in Africa. In an attempt to synthesize information concerning human mtDNA genetic polymorphism, all available data on mtDNA RFLP have been gathered. A phylogeny of the mtDNA types found in 10 populations reveals that all types could have issued from a single common ancestral type. The distribution of shared types between continental groups indicates that caucasoid populations could be the closest to an ancestral population from which all other continental groups would have diverged. A partial phylogeny of the types found in five other populations also demonstrates that the myth of an African Eden was based on an incorrect "genealogical tree" of mtDNA types. Two measures of molecular diversity have been computed on all samples on the basis of mtDNA type frequencies, on one hand, and on the basis of the number of polymorphic sites in the samples, on the other. A large discrepancy is found between the two measures except in African populations; this suggests the existence of some differential selective mechanisms. The lapse of time necessary for creating the observed molecular diversity from an ancestral monomorphic population has been calculated and is found generally greater in Oriental and caucasoid populations. Implications concerning human mtDNA evolution are discussed.  相似文献   

8.
Comparisons of the Irrawaddy dolphin, Orcaella brevirostris , between Australian and Asian sites documented geographic differences in height of dorsal fin, presence or absence of a median dorsal groove in front of the dorsal fin, and coloration (presence or absence of a dorsal cape). Analysis of genetic data provided support for two clades within the Asian samples, the Mekong River samples from Cambodia and southern Laos, and all other marine and freshwater sites from Thailand, Indonesia, and the Philippines. The major separation, however, was between sites in Asia and those from Australia (5.9% of base pair differences, compared with 1.2% for within Australia and 1.5% for within Asia). Within a 403 base segment of the mtDNA control region, Australian specimens had 17 diagnostic sites with 16 fixed base pair differences and one insertion/deletion. Consistent, statistically significant differences in skull characters of Australian specimens have previously been demonstrated and are reviewed in this paper. There was a high concordance in character differences demonstrated between O. brevirostris from all Asian sites and Australian specimens, especially in the genetic and osteological characters. Based on the range and concordance of character differences, we propose that the Australian dolphins be recognized as a new species, Orcaella heinsohni (suggested common name: Australian snubfin dolphin).  相似文献   

9.
A series of new results useful to the study of DNA sequences using Markov models of substitution are presented with proofs. General time-reversible distances can be extended to accommodate any fixed distribution of rates across sites by replacing the logarithmic function of a matrix with the inverse of a moment generating function. Estimators are presented assuming a gamma distribution, the inverse Gaussian distribution, or a mixture of either of these with invariant sites. Also considered are the different ways invariant sites may be removed and how these differences may affect estimated distances. Through collaboration, we implemented these distances into PAUP* in 1994. The variance of these new distances is approximated via the delta method. It is also shown how to predict the divergence expected for a pair of sequences given a rate matrix and a distribution of rates across sites, allowing iterated ML estimates of distances under any reversible model. A simple test of whether a rate matrix is time reversible is also presented. These new methods are used to estimate the divergence time of humans and chimps from mtDNA sequence data. These analyses support suggestions that the human lineage has an enhanced transition rate relative to other hominoids. These studies also show that transversion distances differ substantially from the overall distances which are dominated by transitions. Transversions alone apparently suggest a very recent divergence time for humans versus chimps and/or a very old (>16 myr) divergence time for humans versus organgutans. This work illustrates graphically ways to interpret the reliability of distance-based transformations, using the corrected transition to transversion ratio returned for pairs of sequences which are successively more diverged.  相似文献   

10.
Low Nucleotide Diversity in Man   总被引:49,自引:0,他引:49       下载免费PDF全文
W. H. Li  L. A. Sadler 《Genetics》1991,129(2):513-523
The nucleotide diversity (pi) in humans is studied by using published cDNA and genomic sequences that have been carefully checked for sequencing accuracy. This measure of genetic variability is defined as the number of nucleotide differences per site between two randomly chosen sequences from a population. A total of more than 75,000 base pairs from 49 loci are compared. The DNA regions studied are the 5' and 3' untranslated regions and the amino acid coding regions. The coding regions are divided into nondegenerate sites (i.e., sites at which all possible changes are nonsynonymous), twofold degenerate sites (i.e., sites at each of which one of the three possible changes is synonymous) and fourfold degenerate sites (i.e., sites at which all three possible changes are synonymous). The pi values estimated are, respectively, 0.03 and 0.04% for the 5' and 3' UT regions, and 0.03, 0.06 and 0.11% for nondegenerate, twofold degenerate and fourfold degenerate sites. Since the highest pi value is only 0.11%, which is about one order of magnitude lower than those in Drosophila populations, the nucleotide diversity in humans is very low. The low diversity is probably due to a relatively small long-term effective population size rather than any severe bottleneck during human evolution.  相似文献   

11.
A series of new results useful to the study of DNA sequences using Markov models of substitution are presented with proofs. General time-reversible distances can be extended to accommodate any fixed distribution of rates across sites by replacing the logarithmic function of a matrix with the inverse of a moment generating function. Estimators are presented assuming a gamma distribution, the inverse Gaussian distribution, or a mixture of either of these with invariant sites. Also considered are the different ways invariant sites may be removed and how these differences may affect estimated distances. Through collaboration, we implemented these distances into PAUP* in 1994. The variance of these new distances is approximated via the delta method. It is also shown how to predict the divergence expected for a pair of sequences given a rate matrix and a distribution of rates across sites, allowing iterated ML estimates of distances under any reversible model. A simple test of whether a rate matrix is time reversible is also presented. These new methods are used to estimate the divergence time of humans and chimps from mtDNA sequence data. These analyses support suggestions that the human lineage has an enhanced transition rate relative to other hominoids. These studies also show that transversion distances differ substantially from the overall distances which are dominated by transitions. Transversions alone apparently suggest a very recent divergence time for humans versus chimps and/or a very old (>16 myr) divergence time for humans versus organgutans. This work illustrates graphically ways to interpret the reliability of distance-based transformations, using the corrected transition to transversion ratio returned for pairs of sequences which are successively more diverged.  相似文献   

12.
Theoretical models on the costs and benefits of sexual reproduction usually assume that sexual and parthenogenetic individuals coexist and are identical, except for their mode of reproduction. Empirical studies, however, show that conspecific sexuals and parthenogens can differ in ecological preferences and geographical distribution, which complicates the investigation of the costs and benefits of sex. The freshwater planarian Schmidtea polychroa exists in a sexual and a sperm-dependent, parthenogenetic form. The latter produce fertile sperm and mate, but received sperm is used only to induce parthenogenetic embryo development. We compared the spatial and ecological distribution between forms within a lake from which both had been reported. Forty samples showed large differences in the relative frequencies of sexuals and parthenogens. Nineteen samples contained both biotypes. All but one of the 13 ecological parameters that we measured, could not explain a significant part of the variance in relative abundance of each type. Only leech abundance had a significant, negative effect on the presence of sexual individuals. The causes of this effect remained unclear. We also estimated the amount of genetic isolation between sites and between reproductive modes, using body coloration as a genetic marker. Large differences were found between sites, suggesting isolation of local populations by migration barriers. There were smaller differences between sexuals and parthenogens within sites, suggesting that genetic exchange between biotypes may be limited. We conclude that there appears to be weak niche differentiation between sexuals and parthenogens in Lago di Caldonazzo in late summer. Fluctuations in relative frequency appears to be a consequence of low dispersal between local populations and stochastic effects within them. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Epiperipatus acacioi (Onychophora: Peripatidae) is an endemic species of the Atlantic rainforest in southeastern Brazil, with a restricted known distribution, found only in two nearby areas (Tripuí and Itacolomi). Mitochondrial gene COI sequences of 93 specimens collected across the known range of E. acacioi were used to assess the extant genetic diversity and patterns of genetic structure, as well as to infer the demographic history of this species. We found considerable variability within the populations, even though there has been recent environmental disturbance in these habitats. The samples from the two areas where this species is found showed significantly different COI sequences and constitute two distinct populations [exact test of sample differentiation (P = 0.0008) and pairwise F(ST) analyses (F(ST) = 0.214, P < 0.00001)]. However, there was little genetic differentiation among samples from different sampling sites within populations, suggesting that the potential for dispersal of E. acacioi greater than would have been expected, based on their cryptic behavior and reduced vagility. Mismatch analyses and neutrality tests revealed evidence of recent population expansion processes for both populations, possibly related to variations in the past distribution of this species.  相似文献   

14.
The sequence of the first hypervariable segment (HVS-I) of mitochondrial DNA (mtDNA) was determined in 251 individuals from three eastern Slavonic populations, two Russian and one Belorussian. Within HVS-I, 78 polymorphic positions were revealed. Within-population diversity of HVS-I varies slightly among three samples; its estimates do not differ strongly from those for European populations. Haplotype diversity for three populations calculated in this study is 0.949; mean pairwise differences estimate is 3.59. To assign mtDNA sequences to major phylogenetic clusters, haplogroup-specific restriction polymorphisms were selectively typed in most samples. The haplogroup distribution in the total Eastern Slavonic sample is similar to that reported for the European sample. However, the separate consideration of three Slavonic samples reveals the complicated structure of the mitochondrial gene pool in the Eastern European area. Data of this study support the proposed model of the origin of modern Eastern Slavs, which implies the admixture of ancient Slavonic tribes with pre-Slavonic populations of Eastern Europe. These data should contribute to general studies of mitochondrial DNA variations in Europe.  相似文献   

15.
The Hungarian language belongs to the Finno-Ugric branch of the Uralic family, but Hungarian speakers have been living in Central Europe for more than 1000 years, surrounded by speakers of unrelated Indo-European languages. In order to study the continuity in maternal lineage between ancient and modern Hungarian populations, polymorphisms in the HVSI and protein coding regions of mitochondrial DNA sequences of 27 ancient samples (10th-11th centuries), 101 modern Hungarian, and 76 modern Hungarian-speaking Sekler samples from Transylvania were analyzed. The data were compared with sequences derived from 57 European and Asian populations, including Finno-Ugric populations, and statistical analyses were performed to investigate their genetic relationships. Only 2 of 27 ancient Hungarian samples are unambiguously Asian: the rest belong to one of the western Eurasian haplogroups, but some Asian affinities, and the genetic effect of populations who came into contact with ancient Hungarians during their migrations are seen. Strong differences appear when the ancient Hungarian samples are analyzed according to apparent social status, as judged by grave goods. Commoners show a predominance of mtDNA haplotypes and haplogroups (H, R, T), common in west Eurasia, while high-status individuals, presumably conquering Hungarians, show a more heterogeneous haplogroup distribution, with haplogroups (N1a, X) which are present at very low frequencies in modern worldwide populations and are absent in recent Hungarian and Sekler populations. Modern Hungarian-speaking populations seem to be specifically European. Our findings demonstrate that significant genetic differences exist between the ancient and recent Hungarian-speaking populations, and no genetic continuity is seen.  相似文献   

16.
We address the problem of comparing interindividual genomic sequence diversity between two populations. Although the methods are general, for concreteness we focus on comparing two human immunodeficiency virus (HIV) infected populations. From a viral isolate(s) taken from each individual in a sample of persons from each population, suppose one or multiple measurements are made on the genetic sequence of a coding region of HIV. Given a definition of genetic distance between sequences, the goal is to test if the distribution of interindividual distances differs between populations. If distances between all pairs of sequences within each group are used, then data-dependencies arising from the use of multiple sequences from individuals invalidates the use of a standard two-sample test such as the t-test. Where this problem has been recognized, a typical solution has been to apply a standard test to a reduced dataset comprised of one sequence or a consensus sequence from each patient. Disadvantages of this procedure are that the conclusion of the test depends on the choice of utilized sequences, often an arbitrary decision, and exclusion of replicate sequences from the analysis may needlessly sacrifice statistical power. We present a new test free of these drawbacks, which is based on a statistic that linearly combines all possible standard test statistics calculated from independent sequence subsamples. We describe statistical power advantages of the test and illustrate its use by application to nucleotide sequence distances measured from HIV-1 infected populations in southern Africa (GenBank accession numbers AF110959--AF110981) and North America/Europe. The test makes minimal assumptions, is maximally efficient and objective, and is broadly applicable.  相似文献   

17.
Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples.  相似文献   

18.
Aim Species distribution models are invaluable tools in biogeographical, ecological and applied biological research, but specific concerns have been raised in relation to different modelling techniques in terms of their validity. Here we compare two fundamentally different approaches to species distribution modelling, one based on simple occurrence data where the lack of an ecological framework has been criticized, and the other firmly based in socio‐ecological theory but requiring highly detailed behavioural information that is often limited in availability. Location (Sub‐Saharan) Africa. Methods We used two distinct techniques to predict the realized distribution of a model species, the vervet monkey (Cercopithecus aethiops Linnaeus, 1758). A maximum entropy model was produced taking 13 environmental variables and presence‐only data from 174 sites throughout Africa as input, with an additional 58 sites retained to test the model. A time‐budget model considering the same environmental variables was constructed from detailed behavioural data on 20 groups representing 14 populations, with presence‐only data from the remaining 218 sites reserved to test model predictions on vervet monkey occurrence. Both models were further validated against a reference species distribution map as drawn up by the African Mammals Databank. Results Both models performed well, with the time budget and maximum entropy algorithms correctly predicting vervet monkey presence at 78.4% and 91.4% of their respective test sites. Similarly, the time‐budget model correctly predicted presence and absence at 87.4% of map pixels against the reference distribution map, and the maximum entropy model achieved a success rate of 81.8%. Finally, there was a high level of agreement (81.6%) between the presence–absence maps produced by the two models, and the environmental variables identified as most strongly driving vervet monkey distribution were the same in both models. Main conclusions The time‐budget and maximum entropy models produced accurate and remarkably similar species distribution maps, despite fundamental differences in their conceptual and methodological approaches. Such strong convergence not only provides support for the credibility of current results, but also relieves concerns about the validity of the two modelling approaches.  相似文献   

19.
The 360 base-pair fragment in HVS-1 of the mitochondrial genome were determined from ancient human remains excavated at Noen U-loke and Ban Lum-Khao, two Bronze and Iron Age archaeological sites in Northeastern Thailand, radio-carbon dated to circa 3,500-1,500 years BP and 3,200-2,400 years BP, respectively. These two neighboring populations were parts of early agricultural communities prevailing in northeastern Thailand from the fourth millennium BP onwards. The nucleotide sequences of these ancient samples were compared with the sequences of modern samples from various ethnic populations of East and Southeast Asia, encompassing four major linguistic affiliations (Altaic, Sino-Tibetan, Tai-Kadai, and Austroasiatic), to investigate the genetic relationships and history among them. The two ancient samples were most closely related to each other, and next most closely related to the Chao-Bon, an Austroasiatic-speaking group living near the archaeological sites, suggesting that the genetic continuum may have persisted since prehistoric times in situ among the native, perhaps Austroasiatic-speaking population. Tai-Kadai groups formed close affinities among themselves, with a tendency to be more closely related to other Southeast Asian populations than to populations from further north. The Tai-Kadai groups were relatively distant from all groups that have presumably been in Southeast Asia for longer-that is, the two ancient groups and the Austroasiatic-speaking groups, with the exception of the Khmer group. This finding is compatible with the known history of the Thais: their late arrival in Southeast Asia from southern China after the 10th-11th century AD, followed by a period of subjugation under the Khmers.  相似文献   

20.
Human diphyllobothriasis, caused by Dibothriocephalus nihonkaiensis, is prevalent globally, especially in regions where raw fish is consumed. Recent molecular diagnostic techniques have made species identification of tapeworm parasites and the determination of genetic variations among parasite populations possible. However, only a few studies done over a decade ago, have reported on the genetic variation among D. nihonkaiensis in Japan. The present study employed PCR-based mitochondrial DNA analysis to specifically detect D. nihonkaiensis from archived clinical samples, and to determine any genetic variation that may exist among the Japanese broad tapeworms from patients of Kanagawa Prefecture, Japan. Target genes were amplified from DNA extracted from the ethanol- or formaldehyde-fixed samples by PCR. Further sequencing and comparative phylogenetic analyses based on mitochondrial COI and ND1 sequences were also performed. In our results, all PCR-amplified and sequenced samples were identified as D. nihonkaiensis. Analysis of COI sequences revealed two haplotype lineages. However, clustering of almost all COI (and ND1) sample sequences into one of the two haplotype clades, together with reference sequences from different countries worldwide, revealed a common haplotype among D. nihonkaiensis samples in our study. Our results suggest a possible presence of a dominant D. nihonkaiensis haplotype, with a global distribution circulating in Japan. Results from this study have the potential to improve the management of clinical cases and establish robust control measures to reduce the burden of human diphyllobothriasis in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号