首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.  相似文献   

2.
Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55°C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55°C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45–48°C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.  相似文献   

3.
4.
5.
The genetic and ecological effects of population subdividsion were investigated for two wild strains of Tribolium castaneum and two wild strains of T. confusum and compared with the effects of population subdivision on the synthetic laboratory strain of T. castaneum (c-SM), used extensively in earlier experiments. For the c-SM strain, it has been shown repeatedly, for a variety of different population structures (different combinations of effective numbers, Ne, and migration rates, m), that large heritable differences in population growth rate arise among demes during 10 to 15 generations of population subdivision. Because this laboratory strain was synthesized by mass mating several “inbred” strains in 1973 (80 to 100 generations ago), it is possible that it has genetic variation for fitness (measured as the heritable variance among demes in the rate of population increase) unusually large compared to natural populations of flour beetles. In this paper, I report that natural populations of flour beetle exhibit as much or more phenotypic and genetic variation in the effects of population structure on fitness than the laboratory strain, c-SM. The observation of substantial heritable variation for fitness in natural populations is unexpected under additive theory and may be indicative of nonadditive genetic variance.  相似文献   

6.
Species of Gracilaria are some of the most useful algae in the world for the production of agar. As a consequence of its economic importance, the genus has been the subject of many studies worldwide. Color variants of Gracilaria birdiae have been found in the natural population on the Brazilian coast, and they have also been isolated from plants cultivated in laboratory. These findings raised new questions regarding intraspecific variation and the prospects of cultivating such variants for their agar production. Therefore, this work aimed to determine the mode of color inheritance for two G. birdiae strains: a greenish-brown strain (gb) found in a natural population and a green strain (gr) which had arisen as a spontaneous mutation in a red plant cultured in the laboratory. The pigment contents of these strains, as well as the red wild-type (rd), were also characterized. Crosses between female and male plants of the same color (rd, gr, or gb) and between different colors were performed. Crosses between plants of the same color showed tetrasporophytic and gametophytic descendents of the parental color. Recessive nuclear inheritance was found in the greenish-brown strain, and cytoplasmic maternal inheritance was found in the green strain; both had lower phycoerythrin and higher concentrations of allophycocyanin and phycocyanin than the wild-type. Chlorophyll a contents were similar among all strains. Taken together, our results contribute to knowledge about the variability of this important red algae. In addition, since greenish-brown and green strains showed stability of color, both could be selected and tested in experimental sea cultivation to evaluate if mutants have advantageous performance when compared with red strain.  相似文献   

7.
Growth, substrate utilization and product formation from glucose, citrate and a mixture of both substrates were studied in four strains of Leuconostoc spp. Citrate was not used as an energy source but was rapidly metabolized when glucose was present. The predictable amounts of D-lactate and ethanol were produced from glucose, although strains X2 and 7–1 gave lower yields of ethanol. In strains NCW1, S3 and X2, co-metabolism of both glucose and citrate resulted in stimulation of growth, decreased uptake of glucose, increased acetate and D-lactate production and lack of ethanol production compared with that obtained with glucose alone. Strain 7–1 showed only growth stimulation and increased acetate production. Diacetyl, acetoin or 2, 3-butylene glycol were not detected. In strain NCW1 citrate had a slightly inhibitory effect on the enzymes of the 'ethanol' leg of glucose metabolism. Except for strain 7–1, these observations are consistent with a switch in glucose metabolism from ethanol to acetate production.  相似文献   

8.
9.
Bacterial cellulose finds novel applications in biomedical, biosensor, food, textile and other industries. The optimum fermentation conditions for the production of cellulose by newly isolated Enterobacter amnigenus GH-1 were investigated. The strain was able to produce cellulose at temperature 25–35°C with a maximum at 28°C. Cellulose production occurred at pH 4.0–7.0 with a maximum at 6.5. After 14 days of incubation, the strain produced 2.5 g cellulose/l in standard medium whereas cellulose yield in the improved medium was found to be 4.1 g/l. The improved medium consisted of 4% (w/v) fructose, 0.6% (w/v) casein hydrolysate, 0.5% (w/v) yeast extract, 0.4% (w/v) disodium phosphate, and 0.115% (w/v) citrate. Addition of metal ions like zinc, magnesium, and calcium and solvents like methanol and ethanol were found to be stimulatory for cellulose production by the strain. The strain used natural carbon sources like molasses, starch hydrolysate, sugar cane juice, coconut water, coconut milk, pineapple juice, orange juice, and pomegranate juice for growth and cellulose production. Fruit juices can play important role in commercial exploitation of bacterial cellulose by lowering the cost of the production medium.  相似文献   

10.
Fresh pineapple juice was inoculated with 8 preselected yeast strains and incubated for high yield ethanol production at between 25°C and 35°C.The natural pH of the juice did not affect the growth of the strains or the alcohol yields. The higher ethanol concentrations were obtained at 30°C and 35°C in the ranges of 27.17 to 46.50 g/l and 31.38 to 54.65 g/l, respectively, with 82% and 89% as the highest yields when referring to the theoretical yield.The study indicated that strain CMI is the best performing strain at 30°C and 35°C according to yield and productivity.  相似文献   

11.
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.  相似文献   

12.
Anaerobic fungi were isolated from rumen fluid of a domestic sheep (Ovis aries; a ruminant) and from faeces of five non-ruminants: African elephant (Loxodonta africana), black rhinoceros (Diceros bicornis), Indian rhinoceros (Rhinoceros unicornis), Indian elephant (Elephas maximus) and mara (Dolichotis patagonum). The anaerobic fungus isolated from the sheep was a Neocallimastix species and the isolates from non-ruminants were all species similar to Piromyces spp. A defined medium is described which supported growth of all the isolates, and was used to examine growth characteristics of the different strains. For each fungus the lipid phosphate content was determined after growth on cellobiose and the resulting values were used to estimate fungal biomass after growth on solid substrates. The ability of isolates from ruminants and non-ruminants to digest both wheat straw and cellulose was comparable. More than 90% and 60%, respectively, of filter paper cellulose and wheat straw were digested by most strains within 60-78 h. Growth of two fungi, isolated from rumen fluid of a sheep (Neocallimastix strain N1) and from faeces of an Indian rhinoceros (Piromyces strain R1), on cellobiose was studied in detail. Fungal growth yields on cellobiose were 64.1 g (mol substrate)-1 for N1 and 34.2 g mol-1 for R1. The major fermentation products of both strains were formate, lactate, acetate, ethanol and hydrogen.  相似文献   

13.
We have investigated whether simultaneous modification of cofactor metabolism and glycerol in a strain of Saccharomyces cerevisiae can eliminate glycerol synthesis during ethanol production. Two strains, S812 (gpd1Δ gpd2Δ PGK1p-GLT1) and LE17 (gpd1Δ gpd2Δ PGK1p-GLT1 PGKp-STL1) were generated that showed a 8 and 8.2 % increase in the ethanol yield, respectively, compared to the wild type KAM-2 strain. The ethanol titer was improved from 90.4 g/l for KAM-2 to 97.6 g/l for S812 and 97.8 g/l for LE17, respectively. These results provide a new insight into rationalization of metabolic engineering strategies for improvement of ethanol yield through elimination of glycerol production.  相似文献   

14.
To examine how the duration of laboratory domestication may affect Drosophila stocks used in studies of thermotolerance, we measured expression of the inducible heat‐shock protein Hsp70 and survival after heat shock in D. melanogaster strains recently collected from nature and maintained in laboratory culture for up to 50 or more generations. After an initial increase in both Hsp70 expression and thermotolerance immediately after transfer to laboratory medium, both traits remained fairly constant over time and variation among strains persisted through laboratory domestication. Furthermore, variation in heat tolerance and Hsp70 expression did not correlate with the length of time populations evolved in the laboratory. Therefore, while environmental variation likely contributed most to early shifts in strain tolerance and Hsp70 expression, other population parameters, for example genetic drift, inbreeding, and selection likely affected these traits little. As long as populations are maintained with large numbers of individuals, the culture of insects in the laboratory may have little effect on the tolerance of different strains to thermal stress.  相似文献   

15.
Xylose fermentation performance was studied of a previously developed Saccharomyces cerevisiae strain TMB 3057, carrying high xylose reductase (XR) and xylitol dehydrogenase (XDH) activity, overexpressed non-oxidative pentose phosphate pathway (PPP) and deletion of the aldose reductase gene GRE3. The fermentation performance of TMB 3057 was significantly improved by increased ethanol production and reduced xylitol formation compared with the reference strain TMB 3001. The effects of the individual genetic modifications on xylose fermentation were investigated by comparing five isogenic strains with single or combined modifications. All strains with high activity of both XR and XDH had increased ethanol yields and significantly decreased xylitol yields. The presence of glucose further reduced xylitol formation in all studied strains. High activity of the non-oxidative PPP improved the xylose consumption rate. The results indicate that ethanolic xylose fermentation by recombinant S. cerevisiae expressing XR and XDH is governed by the efficiency by which xylose is introduced in the central metabolism.  相似文献   

16.
A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestal-otiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.Water-soluble cellulose acetate was successfully prepared from purified wood cellulose (Solka Floe) and chemical reagents. Enzyme pretreatment of WSCAto form metabolizable sugars was a necessary step in achieving practical conversion of WSCA to ethanol using yeast. The results showed that WSCA has a low enzyme requirement and a high convertibility to reducing sugars with enzymes from P. westerdijkii fungus. Pestalotiopsis westerdijkii enzymes were found to be superior to enzymes from Trichoderma viride in producing metabolizable glucose from WSCA. The yeast utilized 55-70% of the hydrolyzate sugars that were produced by P. westerrlijkii enzymes on WSCA and produced ethanol. The acetate that was liberated into solution by the action of acetyl esterase enzymes on WSCA was found to have a stimulatory effect on ethanol production in yeast. This is an important feature that can be used to advantage in manipulating the conversion to maximize the production of ethanol. Hence, the simultaneous saccharification-fermentation of WSCA to ethanol using P. westerdijkii enzymes and yeast has features that are highly desirable for developing an economical cellulose conversion process.  相似文献   

17.
Several strains belonging to the genus Bifidobacterium were tested to determine their abilities to produce succinic acid. Bifidobacterium longum strain BB536 and Bifidobacterium animalis subsp. lactis strain Bb 12 were kinetically analyzed in detail using in vitro fermentations to obtain more insight into the metabolism and production of succinic acid by bifidobacteria. Changes in end product formation in strains of Bifidobacterium could be related to the specific rate of sugar consumption. When the specific sugar consumption rate increased, relatively more lactic acid and less acetic acid, formic acid, and ethanol were produced, and vice versa. All Bifidobacterium strains tested produced small amounts of succinic acid; the concentrations were not more than a few millimolar. Succinic acid production was found to be associated with growth and stopped when the energy source was depleted. The production of succinic acid contributed to regeneration of a small part of the NAD+, in addition to the regeneration through the production of lactic acid and ethanol.  相似文献   

18.
Cellulose producing bacterial strain was isolated from citrus fruit juice fungus. The isolated strain was identified as Gluconacetobacter sp. gel_SEA623-2 based on several morphological characteristics, biochemical tests, and 16S rRNA conducted. Culture conditions for bacterial cellulose production by SEA623-2 were screened in static trays. Conditions were extensively optimized by varying the kind of fruit juice, pH, sugar concentration, and temperature for maximum cellulose production. SEA623-2 has a high productive capacity in citrus processing medium, but not in other fruits. The optimal combination of the media constituents for bacterial cellulose production is as follows: 10% citrus juice, 10% sucrose, 1% acetic acid, and 1% ethanol at 30 °C, pH 3.5. Bacterial cellulose produced by SEA623-2 has soft physical properties, high tensile strength, and high water retention value. The cellulose produced by the selected bacteria is suitable as a cosmetic and medical material.  相似文献   

19.
A key challenge to the commercial production of commodity chemical and fuels is the toxicity of such molecules to the microbial host. While a number of studies have attempted to engineer improved tolerance for such compounds, the majority of these studies have been performed in wild-type strains and culturing conditions that differ considerably from production conditions. Here we applied the multiscalar analysis of library enrichments (SCALEs) method and performed a growth selection in an ethanol production system to quantitatively map in parallel all genes in the genome onto ethanol tolerance and production. In order to perform the selection in an ethanol-producing system, we used a previously engineered Escherichia coli ethanol production strain (LW06; ATCC BAA-2466) (Woodruff et al., in press), as the host strain for the multiscalar genomic library analysis (>106 clones for each library of 1, 2, or 4 kb overlapping genomic fragments). By testing individually selected clones, we confirmed that growth selections enriched for clones with both improved ethanol tolerance and production phenotypes. We performed combinatorial testing of the top genes identified (uspC, otsA, otsB) to investigate their ability to confer improved ethanol tolerance or ethanol production. We determined that overexpression of otsA was required for improved tolerance and productivity phenotypes, with the best performing strains showing up to 75% improvement relative to the parent production strain.  相似文献   

20.
Understanding population dynamics is a key factor for optimizing co-culture processes to produce valuable compounds. However, the measurement of independent population dynamics is difficult, especially for filamentous organisms and in presence of insoluble substrates like cellulose. We propose a workflow for fluorescence-based online monitoring of individual population dynamics of two filamentous microorganisms. The fluorescent tagged target co-culture is composed of the cellulolytic fungus Trichoderma reesei RUT-C30—mCherry and the pigment-producing bacterium Streptomyces coelicolor A3(2)—mNeonGreen (mNG) growing on insoluble cellulose as a substrate. To validate the system, the fluorescence-to-biomass and fluorescence-to-scattered-light correlation of the two strains was characterized in depth under various conditions. Thereby, especially for complex filamentous microorganisms, microbial morphologies have to be considered. Another bias can arise from autofluorescence or pigments that can spectrally interfere with the fluorescence measurement. Green autofluorescence of both strains was uncoupled from different green fluorescent protein signals through a spectral unmixing approach, resulting in a specific signal only linked to the abundance of S. coelicolor A3(2)—mNG. As proof of principle, the population dynamics of the target co-culture were measured at varying inoculation ratios in presence of insoluble cellulose particles. Thereby, the respective fluorescence signals reliably described the abundance of each partner, according to the variations in the inocula. With this method, conditions can be fine-tuned for optimal growth of both partners along with natural product formation by the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号