首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i) the xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway and ii) the xylose isomerase (XI) pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3). The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate.  相似文献   

2.
Xylose fermentation performance was studied of a previously developed Saccharomyces cerevisiae strain TMB 3057, carrying high xylose reductase (XR) and xylitol dehydrogenase (XDH) activity, overexpressed non-oxidative pentose phosphate pathway (PPP) and deletion of the aldose reductase gene GRE3. The fermentation performance of TMB 3057 was significantly improved by increased ethanol production and reduced xylitol formation compared with the reference strain TMB 3001. The effects of the individual genetic modifications on xylose fermentation were investigated by comparing five isogenic strains with single or combined modifications. All strains with high activity of both XR and XDH had increased ethanol yields and significantly decreased xylitol yields. The presence of glucose further reduced xylitol formation in all studied strains. High activity of the non-oxidative PPP improved the xylose consumption rate. The results indicate that ethanolic xylose fermentation by recombinant S. cerevisiae expressing XR and XDH is governed by the efficiency by which xylose is introduced in the central metabolism.  相似文献   

3.
ABSTRACT: BACKGROUND: Xylose is the second most abundant carbohydrate in the lignocellulosic biomass hydrolysate. The fermentation of xylose is essential for the bioconversion of lignocelluloses to fuels and chemicals. However the wild-type strains of Saccharomyces cerevisiae are unable to utilize xylose. Many efforts have been made to construct recombinant yeast strains to enhance xylose fermentation over the past few decades. Xylose fermentation remains challenging due to the complexity of lignocellulosic biomass hydrolysate. In this study, a modified genome shuffling method was developed to improve xylose fermentation by S. cerevisiae. Recombinant yeast strains were constructed by recursive DNA shuffling with the recombination of entire genome of P. stipitis with that of S. cerevisiae. RESULTS: After two rounds of genome shuffling and screening, one potential recombinant yeast strain ScF2 was obtained. It was able to utilize high concentration of xylose (100 g/L to 250 g/L xylose) and produced ethanol. The recombinant yeast ScF2 produced ethanol more rapidly than the naturally occurring xylose-fermenting yeast, P. stipitis, with improved ethanol titre and much more enhanced xylose tolerance. CONCLUSION: The modified genome shuffling method developed in this study was more effective and easier to operate than the traditional protoplast fusion based method. Recombinant yeast strain ScF2 obtained in this was a promising candidate for industrial cellulosic ethanol production. In order to further enhance its xylose fermentation performance, ScF2 needs to be additionally improved by metabolic engineering and directed evolution.  相似文献   

4.
The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1076–1083, 2014  相似文献   

5.
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild‐type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high‐ethanol‐producing strain was obtained. Designated as TJ2‐3, this strain could ferment xylose and produce 1.5 times more ethanol than wild‐type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.  相似文献   

6.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

7.
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S. cerevisiae cells. Strains expressing the heterologous transporters were grown on glucose and xylose mixtures. Sugar consumption rates and ethanol concentrations were determined and compared to an isogenic control strain lacking the A. thaliana transporters. Expression of the transporters increased xylose uptake and xylose consumption up to 46% and 40%, respectively. Xylose co-consumption rates (prior to glucose depletion) were also increased by up to 2.5-fold compared to the control strain. Increased xylose consumption correlated with increased ethanol concentration and productivity. During the xylose/glucose co-consumption phase, strains expressing the transporters had up to a 70% increase in ethanol production rate. It was concluded that in these strains, xylose transport was a limiting factor for xylose utilization and that increasing xylose/glucose co-consumption is a viable strategy for improving xylose fermentation.  相似文献   

8.
Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation performance and robustness of eight recombinant strains and two evolved populations on glucose/xylose mixtures in defined and lignocellulose hydrolysate-containing medium. Generally, the polyploid industrial strains depleted xylose faster and were more resistant to the hydrolysate than the laboratory strains. The industrial strains accumulated, however, up to 30% more xylitol and therefore produced less ethanol than the haploid strains. The three most attractive strains were the mutated and selected, extremely rapid xylose consumer TMB3400, the evolved C5 strain with the highest achieved ethanol titer, and the engineered industrial F12 strain with by far the highest robustness to the lignocellulosic hydrolysate.  相似文献   

9.
Schwartz K  Wenger JW  Dunn B  Sherlock G 《Genetics》2012,191(2):621-632
Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain's growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.  相似文献   

10.
The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD+-dependent XDH or engineered NADP+-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD+-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.  相似文献   

11.
Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinantSaccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions.S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within theMIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in nitrogen-limited chemostat cultivations. This study shows that a constitutive catabolite repressed mutant could be used to enhance the xylose consumption rate even in the presence of high glucose in the fermentation medium. This could help in reducing fermentation time and cost in mixed sugar fermentation.  相似文献   

12.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

13.
In the industrial production of bioethanol from lignocellulosic biomass, a strain of Saccharomyces cerevisiae that can ferment xylose in the presence of inhibitors is of utmost importance. The recombinant, industrial-flocculating S. cerevisiae strain NAPX37, which can ferment xylose, was used as the parent to delete the gene encoding p-nitrophenylphosphatase (PHO13) and overexpress the gene encoding transaldolase (TAL1) to evaluate the synergistic effects of these two genes on xylose fermentation in the presence of weak acid inhibitors, including formic, acetic, or levulinic acids. TAL1 over-expression or PHO13 deletion improved xylose fermentation as well as the tolerance of NAPX37 to all three weak acids. The simultaneous deletion of PHO13 and the over-expression of TAL1 had synergistic effects and improved ethanol production and reduction of xylitol accumulation in the absence and presence of weak acid inhibitors.  相似文献   

14.
Two genome-shuffled Scheffersomyces stipitis strains, GS301 and GS302, exhibiting improved tolerance to hardwood spent sulphite liquor, were tested for growth and fermentation performance on three wood hydrolysates: (a) steam-pretreated enzymatically hydrolyzed poplar hydrolysate from Mascoma Canada, (b) steam pretreated poplar hydrolysate from University of British Columbia Forest Products Biotechnology Laboratory, and (c) mixed hardwoods pre-hydrolysate from FPInnovations (FPI). In the FPI hydrolysate, the wild type (WT) died off within 25 h, while GS301 and GS302 survived beyond 100 h. In fermentation tests, GS301 and GS302 completely utilized glucose and xylose in each hydrolysate and produced 0.39–1.4% (w/v) ethanol. In contrast, the WT did not utilize or poorly utilized glucose and xylose and produced non-detectable to trace amounts of ethanol. The results demonstrated cross tolerance of the mutants to inhibitors in three different wood hydrolysates and reinforced the utility of mating-based genome shuffling approach in industrial yeast strain improvement.  相似文献   

15.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

16.
Industrial Saccharomyces cerevisiae strains able to utilize xylose have been constructed by overexpression of XYL1 and XYL2 genes encoding the NADPH-preferring xylose reductase (XR) and the NAD+-dependent xylitol dehydrogenase (XDH), respectively, from Pichia stipitis. However, the use of different co-factors by XR and XDH leads to NAD+ deficiency followed by xylitol excretion and reduced product yield. The furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural inhibit yeast metabolism, prolong the lag phase, and reduce the ethanol productivity. Recently, genes encoding furaldehyde reductases were identified and their overexpression was shown to improve S. cerevisiae growth and fermentation rate in HMF containing media and in lignocellulosic hydrolysate. In the current study, we constructed a xylose-consuming S. cerevisiae strain using the XR/XDH pathway from P. stipitis. Then, the genes encoding the NADH- and the NADPH-dependent HMF reductases, ADH1-S110P-Y295C and ADH6, respectively, were individually overexpressed in this background. The performance of these strains, which differed in their co-factor usage for HMF reduction, was evaluated under anaerobic conditions in batch fermentation in absence or in presence of HMF. In anaerobic continuous culture, carbon fluxes were obtained for simultaneous xylose consumption and HMF reduction. Our results show that the co-factor used for HMF reduction primarily influenced formation of products other than ethanol, and that NADH-dependent HMF reduction influenced product formation more than NADPH-dependent HMF reduction. In particular, NADH-dependent HMF reduction contributed to carbon conservation so that biomass was produced at the expense of xylitol and glycerol formation.  相似文献   

17.
The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.  相似文献   

18.
Tao X  Zheng D  Liu T  Wang P  Zhao W  Zhu M  Jiang X  Zhao Y  Wu X 《PloS one》2012,7(2):e31235
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.  相似文献   

19.
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.  相似文献   

20.
Saccharomyces’ physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04–0.17 h−1. Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17–0.31 g/l/h, with ethanol yields 0.18–0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13–17% more ethanol than the parental control strains because of their ability to ferment xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号