首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastin is the principal protein component of the elastic fiber in vertebrate tissue. The waters of hydration in the elastic fiber are believed to play a critical role in the structure and function of this largely hydrophobic, amorphous protein. (13)C CPMAS NMR spectra are acquired for elastin samples with different hydration levels. The spectral intensities in the aliphatic region undergo significant changes as 70% of the water in hydrated elastin is removed. In addition, dramatic differences in the CPMAS spectra of hydrated, lyophilized, and partially dehydrated elastin samples over a relatively small temperature range (-20 degrees C to 37 degrees C) are observed. Results from other experiments, including (13)C T(1) and (1)H T(1 rho) measurements, direct polarization with magic-angle spinning, and static CP of the hydrated and lyophilized elastin preparations, also support the model that there is significant mobility in fully hydrated elastin. Our results support models in which water plays an integral role in the structure and proper function of elastin in vertebrate tissue.  相似文献   

2.
For a long time, NMR chemical shifts have been used to identify protein secondary structures. Currently, this is accomplished through comparing the observed (1)H(alpha), (13)C(alpha), (13)C(beta), or (13)C' chemical shifts with the random coil values. Here, we present a new protocol, which is based on the joint probability of each of the three secondary structural types (beta-strand, alpha-helix, and random coil) derived from chemical-shift data, to identify the secondary structure. In combination with empirical smooth filters/functions, this protocol shows significant improvements in the accuracy and the confidence of identification. Updated chemical-shift statistics are reported, on the basis of which the reliability of using chemical shift to identify protein secondary structure is evaluated for each nucleus. The reliability varies greatly among the 20 amino acids, but, on average, is in the order of: (13)C(alpha)>(13)C'>(1)H(alpha)>(13)C(beta)>(15)N>(1)H(N) to distinguish an alpha-helix from a random coil; and (1)H(alpha)>(13)C(beta) >(1)H(N) approximately (13)C(alpha) approximately (13)C' approximately (15)N for a beta-strand from a random coil. Amide (15)N and (1)H(N) chemical shifts, which are generally excluded from the application, in fact, were found to be helpful in distinguishing a beta-strand from a random coil. In addition, the chemical-shift statistical data are compared with those reported previously, and the results are discussed. A JAVA User Interface program has been developed to make the entire procedure fully automated and is available via http://ccsr3150-p3.stanford.edu.  相似文献   

3.
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon magnetization it is necessary to prepare samples with isolated (13)C spins so that experiments do not suffer from magnetization transfer between coupled carbon spins that would otherwise occur during the CPMG pulse train. In the case of (13)CO experiments however the large separation between (13)CO and (13)C(alpha) chemical shifts offers hope that robust (13)CO dispersion profiles can be recorded on uniformly (13)C labeled samples, leading to the extraction of accurate (13)CO chemical shifts of the invisible, excited state. Here we compare such chemical shifts recorded on samples that are selectively labeled, prepared using [1-(13)C]-pyruvate and NaH(13)CO(3,) or uniformly labeled, generated from (13)C-glucose. Very similar (13)CO chemical shifts are obtained from analysis of CPMG experiments recorded on both samples, and comparison with chemical shifts measured using a second approach establishes that the shifts measured from relaxation dispersion are very accurate.  相似文献   

4.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
High-resolution solid-state 13C NMR spectra of the light-harvesting antenna complex (LH1) from Rhodospirillum rubrum were observed for the first time by cross-polarization (CP), magic angle spinning (MAS) methods with a total elimination of spinning side band technique (TOSS). Chemical shift analysis of the CP/MAS/TOSS 13C NMR spectra confirmed that the LH1 consists mainly of -helices in the solid state. Time constants of cross polarization (TCH) and relaxation time T1 in a rotating frame (T1H) were determined from the experiments at various contact times. Smaller values of TCH were obtained for the carbons attached directly with protons in a rigid state. Relaxation times T1H revealed the dynamic structure of the complex and showed that bacteriochlorophyll a in the LH1 has high internal mobility even in the solid state. The proton spin-lattice relaxation time in a laboratory frame (T1H) determined by the 13C NMR signal amplitude changes suggested that protons in the LH1 proteins have such strong interaction among them that the spins of all protons in the protein can diffuse through spin-lattice-relaxation.  相似文献   

6.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

7.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

8.
Biological 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
Proton nuclear magnetic resonance spectroscopy (1H NMR) is a powerful analytical method used to identify and quantitate chemical compounds. In recent years, it has been used to study rates of metabolism in microbes, isolated perfused tissues, intact animals, and human beings. This review highlights some of the more recent biological applications of 1H NMR in the study of metabolic pathophysiology in animals and man. 1H NMR can rapidly analyze complex mixtures of metabolites found in body fluid and biopsy specimens. In vivo 1H NMR methods can measure intracellular pH, a wide variety of metabolites, tissue perfusion, and rates of metabolism of endogenous and exogenous compounds. Using 13C labeled compounds or magnetization transfer techniques metabolic fluxes may be measured in vivo during virtually all normal and abnormal physiological conditions.  相似文献   

9.
The effects of accelerated aging of wheat seeds on structural and dynamic properties of dry and hydrated (ca 10 wt % H(2)O) flour at a molecular level were investigated by several high and low resolution solid-state NMR techniques. Identification and characterization of domains with different mobility was performed by (13)C direct excitation (DE) and cross-polarization (CP) magic angle spinning (MAS), as well as by (1)H static and MAS experiments. (1)H spin-lattice relaxation times (T(1) and T(1)(rho)) measurements were carried out to investigate molecular motions in different frequency ranges. Experimental data show that the main components of flour (starch and gluten proteins) are in a glassy phase, whereas the mobile fraction is constituted by lipids and, in hydrated samples, absorbed water. A lower proportion of rigid domains, as well as an increased dynamics of all flour components are observed after both seeds aging and flour hydration. Linear average dimensions between 20 and 200 A are estimated for water domains in hydrated samples.  相似文献   

10.
A pulse sequence is described for recording single-quantum (13)C-methyl relaxation dispersion profiles of (13)C-selectively labeled methyl groups in proteins that offers significant improvements in sensitivity relative to existing approaches where initial magnetization derives from (13)C polarization. Sensitivity gains in the new experiment are achieved by making use of polarization from (1)H spins and (1)H --> (13)C --> (1)H type magnetization transfers. Its utility has been established by applications involving three different protein systems ranging in molecular weight from 8 to 28 kDa, produced using a number of different selective labeling approaches. In all cases exchange parameters from both (13)C-->(1)H and (1)H --> (13)C --> (1)H classes of experiment are in good agreement, with gains in sensitivity of between 1.7 and 4-fold realized using the new scheme.  相似文献   

11.
High-resolution (1)H NMR spectroscopy of body fluids has proved to be very useful in diagnostics of inherited metabolic diseases, whereas (13)C NMR remains almost unexploited. In this paper the application of (13)C NMR spectroscopy of fivefold concentrated urine samples for diagnosis of selected metabolic diseases is reported. Various marker metabolites were identified in test urine samples from 33 patients suffering from 10 different diseases, providing information which could be crucial for their diagnoses. Spectra were accumulated for 2 h or overnight when using spectrometers operating at 9.4 or 4.7 T magnetic fields, respectively. Interpretation of the measurement results was based on a comparison of the peak positions in the measured spectrum with reference data. The paper contains a table with (13)C NMR chemical shifts of 73 standard compounds. The method can be applied individually or as an auxiliary technique to (1)H NMR or any other analytical method.  相似文献   

12.
NMR signal assignments for DNA oligomers have been performed by the well-established sequential assignment procedures based on NOESY and COSY. The H4'/H5'/H5' resonance region is congested and difficult to analyze without the use of isotope-labeled DNA oligomers. Here a DNA dodecamer constructed with 2'-deoxy[5'-(13)C]ribonucleotides, 5'-d(*C*G*C*G*A*A*T*T*C*G*CG)-3' (*N = [5'-(13)C]Nucleotide), was prepared in an effort to analyze the H4'/H5'/H5' resonance region by 2D 1H-13C HMQC-NOESY. In the C5' and H1' resonance region, weak and strong cross peaks for C5'(i)-H1'(i) and C5'(i)-H1'(i-1), respectively, were found, thus enabling the sequential assignment within this region. A similar sequential assignment route was found between C5' and H2'. Proton pair distances evaluated from the canonical B-DNA as well as A-DNA indicated that these sequential-assignment routes on a 2D 1H-13C HMQC-NOESY spectrum work for most nucleic acid stem regions.  相似文献   

13.
The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.  相似文献   

14.
The effect of deuteration on the 13C linewidths of U-13C, 15N 2D crystalline bacteriorhodopsin (bR) from Halobacterium salinarium, a 248-amino acid protein with seven-transmembrane (7TM) spanning regions, has been studied in purple membranes as a prelude to potential structural studies. Spectral doubling of resonances was observed for receptor expressed in 2H medium (for both 50:50% 1H:2H, and a more highly deuterated form) with the resonances being of similar intensities and separated by <0.3 ppm in the methyl spectral regions in which they were readily distinguished. Line-widths of the methyl side chains were not significantly altered when the protein was expressed in highly deuterated medium compared to growth in fully protonated medium (spectral line widths were about 0.5 ppm on average for receptor expressed both in the fully protonated and highly deuterated media from the C delta, C gamma 1, and C gamma 2 Ile 13C signals observed in the direct, 21-39 ppm, and indirect, 9-17 ppm, dimensions). The measured 13C NMR line-widths observed for both protonated and deuterated form of the receptor are sufficiently narrow, indicating that this crystalline protein morphology is suitable for structural studies. 1) decoupling comparison of the protonated and deuterated bR imply that deuteration may be advantageous for samples in which low power 1H decoupling is required.  相似文献   

15.
Well-resolved (2)H-(13)C correlation spectra, reminiscent of (1)H-(13)C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of (2)H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T (1), allowing for high repetition rates and enabling 3D experiments with a (2)H-(13)C transfer step in a reasonable time. Well-resolved 3D (2)H(DQ)-(13)C-(13)C correlations of ubiquitin and OmpG were recorded within 3.5?days each. An essentially complete assignment of (2)H(DQα) shifts and of a substantial fraction of (2)H(DQβ) shifts were obtained for ubiquitin. In the case of OmpG, (2)H(DQα) and (2)H(DQβ) chemical shifts of a considerable number of threonine, serine and leucine residues were assigned. This approach provides the basis for a general heteronuclear 3D MAS NMR assignment concept utilizing pulse sequences with (2)H(DQ)-(13)C transfer steps and evolution of deuterium double-quantum chemical shifts.  相似文献   

16.
We show that adiabatic fast passage (AFP) pulses are robust refocusing elements of transverse 13C magnetization in multidimensional NMR experiments. A pair of identical AFP pulses can refocus selected parts or a complete 13 C chemical shift range in 13C spectra. In the constant time 13C-1H HSQC, replacement of attenuated rectangular pulses by selective AFP pulses results in a sensitivity enhancement of up to a factor of 1.8. In the 3D CBCA(CO)NH the signal-to-noise ratio is increased by a factor of up to 1.6.  相似文献   

17.
13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level.  相似文献   

18.
Rabuka D  Hindsgaul O 《Carbohydrate research》2002,337(21-23):2127-2151
All six regioisomeric monophosphates of octyl beta-D-galactopyranosyl-(1 --> 4)-2-acetamido-2-deoxy-beta-D-glucopyranoside have been chemically synthesized and characterized by high-resolution 1H, 13C and 31P NMR spectroscopy. Phosphorylation causes characteristic downfield shifts of the nucleus at the substituted site in the 1H and 13C NMR signals and resulted in a unique 31P signal for each compound.  相似文献   

19.
Aliev AE 《Biopolymers》2005,77(4):230-245
Historical collagen-based parchments have been studied by solid-state NMR. In addition, new parchment (produced according to traditional methods) and gelatin from bovine skin were also studied. Wideline 1H and MAS 13C measurements were carried out directly on intact parchments. A simple approach is proposed for evaluation of the extent of parchment degradation based on the linewidth changes in the 13C CPMAS spectra relative to new parchment and gelatin. Structural (bound) water content was estimated from wideline 1H NMR lineshape and relaxation time measurements. It was found that the relative water content in parchments correlates linearly with 13C MAS linewidths. Its decrease on parchment degradation indicates that structural water molecules are of primary importance in stabilizing higher order collagen structures. Backbone and side chain dynamics of collagen in parchments were compared to those of gelatin based on the 13C dipolar-dephased experiments. Carbonyl 13C chemical shift anisotropies were measured to deduce the geometry of the collagen backbone motion. Unlike previous studies, we found that the collagen backbone motion is similar to that found in other proteins and occurs primarily via small-angle librations about internal bond directions.  相似文献   

20.
High-resolution solid-state (13)C NMR spectra are presented for samples of alpha-elastin prepared from the aorta of normal and copper-deficient pigs. Chemical shifts of the various peaks indicate that both the normal and undercross-linked peptides have similar overall structures. However, (13)C T(1), (13)C T(1 rho), and (1)H T(1 rho) measurements indicate that the alpha-elastin peptides obtained from the abnormal elastic fibers samples exhibit altered mobilities, particularly in their side chains. Results from spectra taken with a range of contact times and from dipolar dephasing experiments are consistent with conclusions reached with the relaxation measurements. Namely, the loss of function associated with the undercross-linked sample is correlated to a small but measurable difference in relative mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号