首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
Carotenoids extracted from cells of a novel alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis strain LBB1 included unusual carotenoids in the spheroidene pathway; demethylspheroidene, demethylspheroidenone, neurosporene and spheroidenone. Spheroidene was present in only small amounts, and the demethyl-carotenoids demethylspheroidene and demethylspheroidenone predominated in phototrophic cultures. Furthermore, the keto-carotenoids spheroidenone and demethylspheroidenone constituted nearly half of the total carotenoids, even in strict anaerobic phototrophic cultures. Spheroidenone was, however, the sole carotenoid in aerobic cultures. Phototrophic cultures of Rbc. bogoriensis were yellow in colour and quite distinct from the brown-red colour of cultures of Rhodobacter species. The carotenogenesis pathways of Rhodobaca and Rhodobacter species are compared with special reference to two key enzymes of the spheroidene pathway, CrtA and CrtF, whose activities are thought to be responsible for the unusual carotenoid composition of Rhodobaca. This bacterium also contained bacteriochlorophyll a p and ubiquinone-10. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Core complexes (LH1–RC) were isolated using preparative gel electrophoresis from photosynthetic membranes of the purple bacterium, Thiorhodospira sibirica, grown in the absence or presence of the carotenoid biosynthesis inhibitor, diphenylamine. The biosynthesis of carotenoids is affected by diphenylamine both quantitavely and qualitatively: after inhibition, the level of carotenoids in core complexes reaches only 10% of the normal content, as analyzed by HPLC and absorption spectroscopy. The normally grown bacterium biosynthesizes spirilloxanthin, rhodopin, anhydrorhodovibrin and lycopene, whereas after inhibition only neurosporene, ζ-carotene and their derivatives are found in the complexes. There is no concomitant accumulation of appreciable amounts of colorless carotenoid precursors. Interestingly, the main absorption band of the core light harvesting complex isolated from carotenoid-inhibited cells, shows a red shift to 889 nm, instead of a blue shift observed in many carotenoid-deficient species of purple photosynthetic bacteria. The stability of isolated core complexes against n-octyl-β-D-glucopyranoside clearly depends on the presence of carotenoids. Subcomplexes resulting from the detergent treatment, were characterized by non-denaturating gel electrophoresis combined with in situ absorption spectroscopy. Core complexes with the native carotenoid complement dissociate into three subcomplexes: (a) LH1 complexes partially depleted of carotenoids, with an unusual spectrum in the NIR region (λmax = 791, 818, 847 and 875 nm), (b) reaction centers associated with fragments of LH1, (c) small amounts of a carotenoidless B820 subcomplex. The core complex from the carotenoid-deficient bacterium is much less stable and yields only the two sub-complexes (b) and (c). We conclude that carotenoids contribute critically to stability and interactions of the core complexes with detergents.  相似文献   

3.
The wild type (WT) of Scenedesmus obliquus and a mutant lacking chlorophyll b and the light-harvesting complexes (WT-LHC1) were synchronized by a light-dark regime. Both cultures contained the same type of carotenoids. However, concentrations and patterns of carotenoids were different during their synchronous life cycles. The concentration of total carotenoids followed more or less that of chlorophyll. The WT contained more carotenoids per cell mass, but slightly less per chlorophyll. It is discussed that part of the carotenoids of the mutant, lacking the peripheral antenna of PSII, might be located in the chlorophyll b-less apoprotein or in an enlarged core antenna of PSII. During the life cycle of Scenedesmus the carotenes are initially synthesized and most of the α-carotene is immediately oxidized to lutein which is inserted in the antennae systems of PSII and PSI. The further oxidation of lutein to loroxanthin seems to depend on both the change from dark to light, and on stages of the life cycle itself. Although the major part of β-carotene appears to be inserted in the reaction centers, a fraction of the total pool is rapidly converted to violaxanthin, following the onset of illumination. The conversion may serve to protect against photooxidation. Further conversion of violaxanthin to neoxanthin occurs to a greater extent in the mutant, WT-LHC1. The results demonstrate (1) the close connection between the carotenoid pattern and the modulation of the photosynthetic apparatus during the life cycle of Scenedesmus and (2) the flexibility of the organism in compensating for the absence of the light-harvesting complexes of photosystems II by adjusting the carotenoid distribution.  相似文献   

4.
It has been demonstrated that far-red light reduces growth of marine phytoplankton and that light quality controls growth and photosynthetic metabolism in algae. The green halotolerant microalga, Dunaliella bardawil, accumulates high amounts of β-carotene (up to 10% of its dry weight) under conditions of high light or nutrient limitation. The influence of increasing irradiance and of far-red light in D. bardawil was studied. Continuous irradiance was provided by white fluorescent lamps alone (WL) or supplemented with far-red Linestra lamps (WL+FR). For both types of light, cultures were acclimatized at increasing irradiances (50-300 µmol m?2 s?1), and cell density, photosynthetic activity and pigment content were determined. Cell density increased with the photon irradiance, and was higher in WL than in WL+FR under the same irradiance, but the reverse occurred in respect of cell volume. Growth rate was higher under WL+FR. Far-red light induced faster growth but reduced the maximal cell density of the cultures. Chlorophyll a concentration was higher in white light, but total carotenoid content increased dramatically in both far-red light treatments (about 50% on a per cell basis) and with the increase of irradiance. Our results show that far-red light has a significant influence on growth and photosynthesis of D. bardawil, inducing a decrease in cell density, photosynthetic activity and chlorophyll concentration, and an increase in growth rate, cell volume and carotenoid content.  相似文献   

5.
Under stress conditions, some microalgae up-regulate certain biosynthetic pathways, leading to the accumulation of specific compounds. For example, changing nutrient composition can induce stress in algae’s physiological activities, which may trigger an intense increase in carotenoid production. In this study, the change of photosynthetic functions and carotenoid production in the green microalga Scenedesmus sp. was investigated when algal cultures were exposed to conditions including limited nitrogen content with the addition of sodium acetate. Microalgal cultures were treated for 18 days under higher irradiance conditions. We observed a decrease of chlorophyll content induced concomitantly with a decline of photosystem II and I photochemistry. At the same time, an important increase in carotenoid content was detected. By using high-performance liquid chromatographic analysis, we found that the secondary carotenoids astaxanthin and canthaxanthin were accumulated compared to controls. During the process of carotenoid accumulation, chlorophyll degradation was found in addition to a strong decrease in photosynthetic electron transport. Such changes may be associated with the structural reorganization of the photosynthetic apparatus and can be a useful indicator of secondary carotenoid accumulation in algal cultures.  相似文献   

6.
Hans W. Paerl 《Oecologia》1984,61(2):143-149
Summary Photoprotective and photosynthetic roles of carotenoid pigments (xanthophylls and -carotene) were examined in the major bloom forming blue-green algal (cyanobacterial) genera, Anabaena, Aphanizomenon and Microcystis. Since these genera often reside as scums in surface waters, attention was given to the ability of carotenoids to counter potential photooxidation due to maximum near U.V. and visible radiation as well as O2 supersaturation, characterizing surface waters supporting blooms. In U.V.-transparent quartz incubation flasks it was shown that inhibition of carotenoid synthesis by diphenylamine led to rapid photooxidation among the above genera. When carotenoid synthesis was allowed to proceed, a high degree of resistance to photooxidation resulted. Prolonged exposure to near U.V. irradiation led to enhanced carotenoid synthesis relative to chlorophyll a, which extended viability. Carotenoid enhancement also increased chlorophyll a-specific photosynthetic O2 production. It is concluded that enhanced carotenoid synthesis observed during blooms serves at least two ecological functions, i) providing photoprotection and ii) increasing photosynthetic performance of surface cyanobacterial populations.  相似文献   

7.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

8.
A new cyanobacterial isolate, morphologically closely resembling Aphanocapsa, was characterized for its growth requirements, as well as pigmentation, photosynthetic activity and dynamics of the D1 protein in the reaction center (RC) of photosystem II (PSII). It was shown to be able to grow on glucose in the dark in the presence of DCMU. The cyanobacterium turned light yellow at high light intensity in the absence, and dark emerald green in high light in the presence of sublethal concentrations of the DCMU-type inhibitor atrazine. While total carotenoids per cell slightly decreased with increasing light intensity during growth, the cells still turned pale yellow due to decreased levels of chlorophyll and phycocyanin. In contrast to β-carotene, zeaxanthin and echinenone which decreased with increasing light intensity during growth, the carotenoid glycoside, myxoxanthophyll, continuously increased in concentration. Extremely high rates of light-saturated O2 evolution were recorded for the high light cultures after a 0.5 h recovery period in the dark. The recovery measured after 2.5 h was shown to be less effective in darkness than in dim light and was prohibited by chloramphenicol. The degree of recovery was dependent on the light intensity during growth. A fast light intensity-dependent RC II-D1 protein turnover was found for the bleached yellow cells rich in myxoxanthophyll. The half-life of the RC II-D1 protein, plotted against the light intensity during growth and experimentation, yielded a curve the slope of which was considerably steeper for Aphanocapsa than for Anacystis. Apparently, the isolated strain of Aphanocapsa reacts more vigorously to changes in the environment than other strains tested and may, therefore, turn out to be a suitable organism in the attempt to elucidate the molecular mechanism of light intensity adaptation.  相似文献   

9.
The obligate aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 contain numerous polar carotenoids. The major carotenoid of the strain RB3 was the C30 carotene-dioate (4,4-diapocarotene-4,4-dioate) and the respective diglycosyl ester which have never been isolated before from a bacteriochlorophyll containing bacterium. Strain E5 contains the very polar erythroxanthin sulphate. The major carotenoid bound to reaction center and light-harvesting complexes is bacteriorubixanthinal. Most of the carotenoids of both strains are not bound to the pigment-protein complexes of the photosynthetic apparatus but to the envelope fraction (cytoplasmic membrane and cell wall).Abbreviations Bchl bacteriochlorophyll - MeOH methanol  相似文献   

10.
The carotenoids of unialgal cultures originating from symbiotic zooxanthellae of two molluscan (Tridacna crocea, a giant clam, and Pteraeolidia ianthine a nudibranch) and one cnidian (Pseudopterogorgia bipinnata, a gorgonian coral) host have been analysed by HPLC or TLC procedures combined with several spectroscopic techniques including MS and NMR. A high total carotenoid content (0.45-0.63% of the dry wt) was obtained. The carotenoid pattern with C37-norcarotenoids (peridinin and pyrrhoxanthin) comprising around 80% of total carotenoids, and β,β-carotene (2%), the ailenic dinoxanthin (3–4%) and the acetylenic diatoxanthin (1–3%) and diadinoxanthin (7–9%) representing minor C40-carotenoids, corresponds to that of peridinin-producing free-living dinoflagellates. Supplementary 1H NMR and 13C NMR data are reported for peridinin and pyrrhoxanthin. A polar, minor carotenoid, P447, was partly characterized as containing a disaccharide glycosidically bound to an allenic carotenoid aglycone. Re-evaluation of previous reports suggests the wide-spread occurrence of related carotenoid disaccharides in Dinophyceae for which they are considered a new chemosystematic marker.  相似文献   

11.
The fluorescence spectrum of an allenic carotenoid, all-trans-fucoxanthin isolated from a brown alga, has been reported for the first time. This carotenoid is known to function efficiently as a primary photosynthetic antenna pigment in marine algae. The emission bands were located around 630, 685 and 750 nm in CS2 at 20°C, absorption bands being located at 448, 476 and 505 nm. The energy difference between the 0-0 bands of absorption and emission spectra was about 3900 cm-1 and location of the emission maximum was less sensitive to the polarizability of solvents than that of the absorption maximum. These clearly indicate that the emission originates from the optically forbidden singlet state (2Ag). This is in contrast to other carotenoids whose emission is assigned to 1Bu state, probably due to the symmetric structure of the conjugated double bond responsible for the absorption in the visible region. A rapid internal conversion from 1Bu to 2Ag state might be facilitated by distorted structure of the conjugated double bond of fucoxanthin. The energy level responsible for the emission is almost identical to the Qy level of the acceptor molecule (Chl a), thus we propose an energy transfer pathway from the optically forbidden 2Ag state of the carotenoid to the Qy transition of Chl a in algal pigment systems.  相似文献   

12.
C. Schnarrenberger  H. Mohr 《Planta》1970,94(4):296-307
Summary Accumulation of carotenoids in the mustard seedling (Sinapis alba L.) is controlled by phytochrome (Pfr). Separation of the carotenoids shows that the control is quantitative rather than qualitative. Kinetic studies indicate that Pfr exerts a rapid and nearly reversible control over the rate of carotenoid accumulation. Whereas carotenoid accumulation between 36 and 60h after sowing is relatively insensitive towards Actinomycin D, the sensitivity towards cycloheximide and Puromycin is high. It is concluded that at least some of the enzymes required for carotenoid biosynthesis are made in the extraplastidal cytoplasm and it is suggested that Pfr acts at the level of carotenoid accumulation by providing a structural prerequisite for carotenoid accumulation in the plastid compartment. This latter suggestion is mainly based on the fact that carotenoid accumulation in light and dark is very sensitive towards chloramphenicol if the compound is applied at the time of sowing. If, however, the compound is applied 36 h after sowing, the effect of chloramphenicol is different in light and dark. In the dark there is no influence up to 200 g·ml-1, whereas in the light there is a significant inhibition of carotenoid accumulation.Herrn Prof. Kurt Mothes mit guten Wünschen zum 70. Geburtstag.  相似文献   

13.
After solubilization of photosynthetic membranes by digitonin, three main protein pigment complexes were isolated by electrophoresis with deoxycholate as detergent.The band with the slowest mobility, fraction 1, had PS 1 activity and was devoid of PS 2 activity. This fraction was four times enriched in P700 when compared with chloroplasts. Fraction 1 had little chl b, a long wavelength absorption maximum in the red, a maximum of low temperature emission fluorescence at 730nm, and a circular dichroism spectrum characteristic of PS 1 enriched fraction.Fraction 2 exhibited a PS 2 activity and no PS 1 activity. It was enriched five times in PS 2 reaction centre and had little chl b and carotenoids. The absorption maximum was at 674 nm and the low temperature fluorescence emission maximum was at 700 nm. Fraction 2 might be useful PS 2 enriched particle because of the great stability of this fraction with regard to photochemical activity and also rapidity and simplicity of its preparation.Fraction 3, which had the fastest migration, was devoid of photochemical activities; It was rich in chl b and had the fluorescence and the circular dichroism spectrum characteristic of an antenna complex.Abbreviations PS 1 (2) photosystem 1 (2) - chl chlorophyll - car carotenoid - Q primary plastoquinone electron acceptor - P700 primary electron donor of PS 1 - P680 primary electron donor of PS 2 - K3Fe(CN)6 potassium ferricyanide - DCMU dichlorophenyldimethylurea - DCPIP dichlorophenolindophenol - DPC diphenyl-carbazide  相似文献   

14.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

15.

Background

As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY) is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism.

Methology/Principal Findings

In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 µg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to β-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals.

Conclusions

The sequestration of carotenoids into crystals can be driven by the functional overexpression of one biosynthetic enzyme in non-green plastids not requiring a chromoplast developmental program as this does not exist in Arabidopsis. Thus, PSY expression plays a major, rate-limiting role in the transition from white to orange-colored carrots.  相似文献   

16.
Blakeslea trispora produces carotenoids mixtures consisting mainly of lycopene, γ-carotene and β-carotene, together with trace amounts of other carotenoid precursors. The yield of these carotenoids and their composition are greatly affected by culture substrate. The scavenging capacity of carotenoids extract from cultures of B. trispora growing in various substrates was estimated using the 2,2-diphenyl-1-picrylhydrazyl method. Fractions enriched in β-carotene, γ-carotene and lycopene, obtained after column chromatography in alumina basic II, were also examined. Substrates containing starch and oils mixture, Ni2+, and that with pantothenic acid presented higher antioxidant activity. An increase in the antioxidant activity of the crude carotenoid extract compared to that of the isolated fractions enriched in β-carotene, γ-carotene and lycopene respectively, observed in most samples, indicated a possible synergistic effect. The results are of interest and by expanding this study to more substrates and other microorganisms- producing antioxidants, a formulation of extract with high free radical scavenging potential could be produced.  相似文献   

17.
Benešová  J.  Ničková  K.  Ferimazova  N.  Štys  D. 《Photosynthetica》2000,38(2):233-241
Thermophilic unicellular cyanobacterium Synechococcus elongatus Näg. var. thermalis Geitl. strain Kovrov 1972/8 was cultivated in continuous flow reactor to simulate conditions occurring in nature in regions with low iron concentration. Two degrees of iron deprivation were established: (a) low iron (LI) conditions (9.0 µM Fe) when cells still maintained maximal growth rate but already exhibited changes in photosynthetic apparatus, and (b) iron deficient (ID) conditions (0.9 µM Fe) when cell growth rate decreased and extensive morphological and functional changes were observed. A decrease in the cellular content of phycobilin antenna was observed in both ID and LI cells and an increase of carotenoid concentration only in the ID culture. Morphologically, ID cells showed a decrease in the amount of phycobilins and in the number of thylakoid membranes. This suggests that S. elongatus responds to decrease in iron availability by substitution of the phycobilisomes by antennae containing chlorophyll (Chl) and carotenoids. Photochemical activity of photosystem (PS) 2, determined as Fv/Fm ratio was similar in high iron (HI) and LI cultures and approximately five times lower in ID culture. On the other hand, the activity of the whole electron transport chain showed the opposite tendency: the relative rates of the CO2-dependent oxygen evolution in HI : LI : ID cultures were approximately 1 : 2 : 4. Thus in nutrient stress the photosynthetic apparatus preserved its activity despite the decrease in the amount of both Chl-binding complexes and thylakoid membranes.  相似文献   

18.
19.
The enhanced interest in carotenoid research arises partly because of their application in the food and health industries and partly because of the necessity to find a commercially viable natural source for their mass production. The bottlenecks in finding a natural source of carotenoids which can compete with the synthetic products is the mass production of the organism that produces carotenoids, cell harvesting and extraction methods of carotenoids. The microalga Botryococcus braunii is an interesting organism for its commercial value as a rich source of carotenoids. It contains lutein as major carotenoid which is considered to be one of the beneficial carotenoids in human health applications. The current paper reviews the status of B. braunii as an alternative source of carotenoid production on the commercial scale addressing aspects like cultures of algae, factors that enhance the production and accumulation of carotenoids, cell harvesting methods, and carotenoid extraction. The paper also presents an overview of identification, characterization and structural elucidation of carotenoids from B. braunii and their bioactivity.  相似文献   

20.
Two cultures, a yeast (Rhodorula rubra GED8) and a yogurt starter (Lactobacillus bulgaricus 2–11+Streptococcus thermophilus 15HA), were selected for associated growth in whey ultrafiltrate (WU) and active synthesis of carotenoids. In associated cultivation with the yogurt culture L bulgaricus 2–11+S. thermophilus 15HA under intensive aeration (1.3 l–1min–1 air-flow rate) in WU (45 g lactose l–1), initial pH 5.5, 30 °C, the lactose-negative strain R. rubra GED8 synthesized large amounts of carotenoids (13.09 mg l–1 culture fluid). The carotenoid yield was approximately two-fold higher in association with a mixed yogurt culture than in association with pure yogurt bacteria. The major carotenoid pigments comprising the total carotenoids were -carotene (50%), torulene (12.3%) and torularhodin (35.2%). Carotenoids with a high -carotene content were produced by the microbial association 36 h earlier than by Rhodotorula yeast species. No significant differences were notd in the ratio between the pigments synthesized by R. rubra GED8+L. bulgaricus 2–11, R. rubra GED8+S. thermophilus 15HA, and R.rubra GED8+yogurt culture, despite the fact that the total carotenoid concentrations were lower in the mixed cultures with pure yogurt bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号