首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin has been purified from amoebae of Dictyostelium discoideum by a procedure which is notable in that proteolysis has been diminished to undetectable levels and "selective" purification steps have been avoided. The overall yield of this procedure is 5- to 10- fold greater than that of a previous report (Spudich, J. A. (1974) J. Biol. Chem. 249, 6013-6020). The detailed biochemical and structural properties of this new preparation (preparation B) have been compared to those of Dictyostelium actin prepared by the previous procedure (preparation A) as well as to rabbit skeletal muscle actin. Preparation B actin is similar to muscle actin in its molecular weight, ability to activate myosin, filament structure, and polymerization properties. Preparation B actin has the same molecular weight and isoelectric point as preparation A actin, which is more acidic than that of skeletal muscle actin. However, preparation B actin and muscle actin form longer filaments than preparation A actin, as judged by viscometry and electron microscopy.  相似文献   

2.
3.
Myosin mutants and their suppressors can provide information about conformational states of the myosin motor and their biochemical properties. Appropriate mutations can give rise to motors that arrest or overoccupy otherwise inaccessible states in the motor cycle. Intragenic (in the same gene) suppressor mutations that counteract mutations of known properties represent "fixes" or counters to the defect of the starting mutation and thus contain information about driving transitions or stabilizing states of the motor. Due to its variety of myosin-dependent phenotypes, Dictyostelium is a powerful tool for the identification of conditional mutants as well as selection of large numbers of intragenic revertants of a mutant of interest. Techniques are presented that allow isolation and identification of cold-sensitive myosin mutants in Dictyostelium as well as facile selection of revertants and identification of their suppressing mutation.  相似文献   

4.
A tripeptidyl peptidase I from Dictyostelium discoideum was purified 744-fold to near homogeneity. The enzyme is 214 kDa in size and is composed of two monomers with a M(r) of 107 kDa. It has two pH optima at pH 4.5 and 5.9 and is a serine peptidase with no aminopeptidase or dipeptidyl peptidase activity. The enzyme was relatively specific showing activity on ala-ala-phe-p-nitroaniline but also acted on substrates with proline in the P1 position in contrast to mammalian TPP I. The K(m) values of the enzyme at pH 4.5 for ala-ala-phe-, ala-phe-pro- and ala-ala-pro-p-nitroanilines were 27 microM, 437 microM and 888 microM, respectively. The enzyme is most abundant during the amoeba stage of the life cycle but is present in the early stages of development and may therefore have a dual role in the organism in mobilizing amino acids or in processing specific peptides or proteins.  相似文献   

5.
The effect of thyroidectomy on oxidative metabolism of rat liver, kidney, and brain mitochondria has been examined. The respiration in liver, kidney, and brain mitochondria was affected differentially after thyroidectomy, the common effect in all the tissues being the impairment in state 3 as well as state 4 rates of succinate oxidation. Thyroidectomy did not have any effect on ADPO ratios; however, compared to normal, respiratory control indexes were, in general, somewhat higher. Thyroidectomy also did not alter total ATPase activity of liver, kidney, and brain mitochondria, although the basal ATPase activity had decreased significantly under these conditions. The cytochrome content of the mitochondria also showed tissue-specific changes after thyroidectomy; however, no significant changes in the absorption characteristics of the cytochromes were seen. The succinate and glutamate dehydrogenase activities of mitochondria from liver, kidney, and brain were not affected by thyroidectomy, thereby ruling out the possibility that the decrease in substrate oxidation may be due to alterations in the primary dehydrogenase levels. It is concluded that thyroid hormone(s) may have a tissue-specific role in regulating the metabolic functions of mitochondria.  相似文献   

6.
Jang W  Gomer RH 《Eukaryotic cell》2011,10(2):150-155
Much remains to be understood about how a group of cells break symmetry and differentiate into distinct cell types. The simple eukaryote Dictyostelium discoideum is an excellent model system for studying questions such as cell type differentiation. Dictyostelium cells grow as single cells. When the cells starve, they aggregate to develop into a multicellular structure with only two main cell types: spore and stalk. There has been a longstanding controversy as to how a cell makes the initial choice of becoming a spore or stalk cell. In this review, we describe how the controversy arose and how a consensus developed around a model in which initial cell type choice in Dictyostelium is dependent on the cell cycle phase that a cell happens to be in at the time that it starves.  相似文献   

7.
We have isolated a cDNA coding for beta-COP from Dictyostelium discoideum by polymerase chain reaction using degenerate primers derived from rat beta-COP. The complete cDNA clone has a size of 2.8 kb and codes for a protein with a calculated molecular mass of 102 kDa. Dictyostelium beta-COP exhibits highest homology to mammalian beta-COP, but it is considerably smaller due to a shortened variable region that is thought to form a linker between the highly conserved N- and C-terminal domains. Dictyostelium beta-COP is encoded by a single gene, which is transcribed at moderate levels into two RNAs that are present throughout development. To localize the protein, full-length beta-COP was fused to GFP and expressed in Dictyostelium cells. The fusion protein was detected on vesicles distributed all over the cells and was strongly enriched in the perinuclear region. Based on coimmunofluorescence studies with antibodies directed against the Golgi marker comitin, this compartment was identified as the Golgi apparatus. Beta-COP distribution in Dictyostelium was not brefeldin A sensitive being most likely due to the presence of a brefeldin A resistance gene. However, upon DMSO treatment we observed a reversible disassembly of the Golgi apparatus. In mammalian cells DMSO treatment had a similar effect on beta-COP distribution.  相似文献   

8.
We purified to homogeneity the Dictyostelium discoideum myosin heavy chain kinase that is implicated in the heavy chain phosphorylation increases that occur during chemotaxis. The kinase is initially found in the insoluble fraction of developed cells. The major purification step was achieved by affinity chromatography using a tail fragment of Dictyostelium myosin (LMM58) expressed in Escherichia coli (De Lozanne, A., Berlot, C. H., Leinwand, L. A., and Spudich, J. A. (1988) J. Cell Biol. 105, 2990-3005). The kinase has an apparent molecular weight of 84,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent native molecular weight by gel filtration is 240,000. The kinase catalyzes phosphorylation of myosin heavy chain or LMM58 with similar kinetics, and the extent of phosphorylation for both is 4 mol of phosphate/mol. With both substrates the Vmax is about 18 mumol/min/mg and the Km is 15 microM. The myosin heavy chain kinase is specific to Dictyostelium myosin heavy chain, and the phosphorylated amino acid is threonine. The kinase undergoes autophosphorylation. Each mole of kinase subunit incorporates about 20 mol of phosphates. Phosphorylation of myosin by this kinase inhibits myosin thick filament formation, suggesting that the kinase plays a role in the regulation of myosin assembly.  相似文献   

9.
A cdc2 homologous sequence was amplified from Dictyostelium discoideum by the polymerase chain reaction and used to isolate several cDNA clones. The amino acid sequence encoded by these cDNAs exhibited approx. 60% identity to the Cdc2 proteins of other species. A cDNA containing the entire coding sequence complemented the temperature sensitive cdc28 mutant of Saccharomyces cerevisiae, although growth of the transformants was slow and limited. Southern blot analysis of restriction digests under high stringency conditions provided evidence that Dictyostelium contains a single cdc2 gene, although at lower stringency multiple fragments were detected, suggesting the existence of a cdc2 gene family. Northern blot analysis of RNA from different stages of Dictyostelium development showed that cdc2 mRNA levels increased during aggregation and then decreased to low levels by the pseudoplasmodial stage of development. By contrast, cdc2 mRNA levels remained relatively constant as cells passed from exponential growth to the stationary phase.  相似文献   

10.
Purpurin, the lectin from Dictyostelium purpureum, has been resolved into seven tetrameric isolectins by polyacrylamide gel electrophoresis at pH 8.9. The isolectins are assembled from four distinct subunits resolved by electrophoresis in sodium dodecyl sulfate and by tryptic peptide mapping. Two of the subunits combine randomly with each other to form mixed tetramers (I4, I3II1, I2II2, I1II3, II4) in binomial proportions. The other two subunits (III and IV) form only homotetramers. The isolectins can be functionally discriminated and separated on the basis of their relative affinities for columns derivatized with complementary saccharides. On the basis of relative sensitivity to hapten inhibitors of hemagglutination, isolectins III4 and IV4 are distinct from each other and from isolectins composed of subunits I and II. However, isolectins of I and II are not distinguishable on the basis of hemagglutination inhibition. None of the subunits are glycosylated, and all form tetramers with molecular weights of approximately 88,000. The existence of multiple functionally distinct forms suggests that lectin function in cellular slime molds may be more complex than presently envisioned.  相似文献   

11.
During the aggregation and differentiation of amoebae of Dictyostelium discoideum, changes in free cytosolic Ca2+ appear to regulate a number of physiological processes. To understand the mechanisms regulating free intracellular Ca2+ in this organism, we have isolated and characterized an ATP/Mg2+-dependent, high-affinity Ca2+ pump. When homogenates of 2 h starved cells were fractionated on Percoll/KCl gradients, one peak of high-affinity Ca2+-pumping activity was detected. This activity was resolved from enzyme markers of the mitochondrion and the rough endoplasmic reticulum but it cosedimented with the plasma membrane marker, alkaline phosphatase. Further studies suggested that the pump was associated with 'inside-out' plasma membrane vesicles. Like plasma membrane Ca2+-transport ATPases from other systems, this isolated Ca2+ pump: (1) was Mg2+-dependent, (2) displayed a high specificity for ATP as an energy source, (3) exhibited a high affinity for free Ca2+ with a Km of 0.3 microM, and (4) was very sensitive to inhibition by vanadate (IC50 2 microM) but was unaffected by mitochondrial inhibitors, ouabain and Ca2+-channel blockers. Unlike plasma membrane Ca2+ pumps from most other systems, this enzyme appeared not to be regulated by calmodulin. During development, non-mitochondrial, vanadate-sensitive, high-affinity Ca2+-pumping activity in crude lysates remained relatively constant for at least 15 h. These observations suggest that this plasma membrane Ca2+ pump probably functions in Dictyostelium to maintain Ca2+ homeostasis by extruding free cytosolic Ca2+ from the cells.  相似文献   

12.
13.
14.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

15.
16.
《Experimental mycology》1982,6(3):274-282
Isocitrate dehydrogenase (threo-ds-isocitrate: NAD oxidoreductase (decar☐ylating) EC 1.1.1.41) from Dictyostelium dicoideum was purified 161-fold. The purified enzyme was NAD specific and required Mn2+ for activity. Isocitrate consumption and 2-oxoglutarate and NADH production were stoichiometric; no NADH oxidase or glutamate dehydrogenase activities were detected. The pH optimum range for activity was pH 7.5–8.5. Reductive car☐ylation of 2-oxoglutarate with NADH could not be demonstrated. Lineweaver - Burk plots of data from initial velocity studies were linear. There was no evidence of allosteric control by reported effectors (AMP, ADP, citrate) of isocitrate dehydrogenase activity. The reaction was inhibited by NADH. The inhibition by NADH was competitive when either isocitrate or NAD was the variable substrate. 2-Oxoglutarate was not inhibitory at concentrations below 4 mm. The Michaelis constant (Km) and dissociation constant (Kib) for isocitrate were 0.16 mm; and Km and dissociation constant (Kia) for NAD were 0.34 mm. The inhibition constant for NADH was 0.02 mm. The data are consistent with a rapid equilibrium random bi-bi reaction mechanism (Cleland nomenclature). The NAD-linked isocitrate dehydrogenase activity was also demonstrated in crude extracts of isolated mitochondria.  相似文献   

17.
《Experimental mycology》1989,13(1):13-19
The purification and kinetic characterization of uridine phosphorylase from Dictyostelium discoideum are described. Matrex Green A, a dye-affinity chromatography gel, was used for the purification. The enzyme was specifically eluted from the dye bead matrix with the use of its substrate, uridine, resulting in a purification of 70- to 2000-fold. The enzyme preparation exhibited stoichiometry. For nucleoside phosphorolysis, the Km values for phosphate and uridine were 0.42 and 0.24 mm, respectively, and the Ki for phosphate was 3.0 mm. For nucleoside synthesis, the Km values for uracil and ribose 1-phosphate were 0.06 and 0.14 mm, respectively, and the Ki for ribose 1-phosphate was 0.05 mm. An ordered sequential bi:bi mechanism is proposed based on product inhibition studies.  相似文献   

18.
This work provides the first three-dimensional structure of a member of the plant annexin family and correlates these findings with biochemical properties of this protein. Annexin 24(Ca32) from Capsicum annuum was purified as a native protein from bell pepper and was also prepared by recombinant techniques. To overcome the problem of precipitation of the recombinant wild-type protein in crystallization trials, two mutants were designed. Whereas an N-terminal truncation mutant turned out to be an unstable protein, the N-terminal His-tagged annexin 24(Ca32) was crystallized, and the three-dimensional structure was determined by x-ray diffraction at 2. 8 A resolution. The structure refined to an R-factor of 0.216 adopts the typical annexin fold; the detailed structure, however, is different from non-plant annexins, especially in domains I and III and in the membrane binding loops on the convex side. Within the unit cell there are two molecules per asymmetric unit, which differ in conformation of the IAB-loop. Both conformers show Trp-35 on the surface. The loop-out conformation is stabilized by tight interactions of this tryptophan with residue side chains of a symmetry-related molecule and enforced by a bound sulfate. Characterization of this plant annexin using biophysical methods revealed calcium-dependent binding to phospholipid vesicles with preference for phosphatidylcholine over phosphatidylserine and magnesium-dependent phosphodiesterase activity in vitro as shown with adenosine triphosphate as the substrate. A comparative unfolding study of recombinant annexin 24(Ca32) wild type and of the His-tag fusion protein indicates higher stability of the latter. The effect of this N-terminal modification is also visible from CD spectra. Both proteins were subjected to a FURA-2-based calcium influx assay, which gave high influx rates for the wild-type but greatly reduced influx rates for the fusion protein. We therefore conclude that the N-terminal domain is indeed a major regulatory element modulating different annexin properties by allosteric mechanisms.  相似文献   

19.
20.
Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The K(m) values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号