首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA adducts of mitomycin C (MMC) were detected by 32P-postlabeling analysis in both surgical specimens and an autopsy sample of the liver of patients with hepatocellular carcinoma who had received chemotherapy with MMC. Four kinds of adducts were detected in all 6 patients treated with MMC. These adducts had identical chromatographic mobilities to those of adducts in the liver of rats treated with MMC, but 1 additional adduct was detected in rat liver. In patients treated with MMC, about 3 adducts/10(8) nucleotides were found 4 days after MMC treatment, and 1 adduct/10(8) nucleotides 14 days after treatment and the latter level was maintained for up to 56 days. MMC-DNA adducts were also detected in peripheral blood leukocytes from a patient 1 and 7 days after MMC treatment, at levels of 1 and 0.6 adduct/10(8) nucleotides, respectively. These results suggest the tumor-initiating activity of MMC in humans.  相似文献   

2.
Our previous work has shown that treatment of nucleosides with malonaldehyde simultaneously with acetaldehyde affords stable conjugate adducts. In the present study we demonstrate that conjugate adducts are also formed in calf thymus DNA when incubated with the aldehydes. The adducts were identified in the DNA hydrolysates by their positive ion electrospray MS/MS spectra, by coelution with the 2'-deoxynucleoside standards, and, in the case of adducts exhibiting fluorescent properties, also by LC using a fluorescence detector. In the hydrolysates of double-stranded DNA (ds DNA), two deoxyguanosine and two deoxyadenosine conjugate adducts were detected and in single-stranded DNA (ss DNA) also, the deoxycytidine conjugate adduct was observed. The guanine base was the major target for the malonaldehyde-acetaldehyde conjugates and 2'-deoxyguanosine adducts were produced in ds DNA at levels of 100-500 adducts/10(5) nucleotides (0.7-3 nmol/mg DNA).  相似文献   

3.
Ochratoxin A (OTA), a nephrotoxic and nephrocarcinogenic mycotoxin, leads to the formation of DNA adducts after administration to animals. This could be due to an epigenetic effect. In vitro assays can exclude an indirect effect, where the xenobiotic can generate, in vivo, endogenous reactive compounds which give adducts on DNA. Microsomes prepared from mice or rabbit kidney and liver, used as metabolic activators, were incubated in the presence of commercial salmon testes DNA and OTA, with NADPH or arachidonic acid used as cofactors. Upto 126 DNA adducts for 10(9) nucleotides were detected using the 32P postlabeling method after incubation with the mouse kidney system. Similar results were obtained with rabbit kidney microsomes. Using liver microsomes, the number of DNA adducts detected was much lower. When NADPH was used as a cosubstrate (to explore the cytochrome P450 metabolic pathways), with mice kidney microsomes, the adduct level was only 44% of the one obtained with arachidonic acid. These results lend support to the hypothesis of the preferential activation of OTA by the peroxidase activity of prostaglandin synthases and/or lipoxygenases to direct genotoxic metabolites, and are in agreement with the previously obtained results after in vivo treatment of mice. In order to identify the nucleotides of DNA modified by the OTA metabolites, dAMP, dGMP, dTMP and dCMP were used as substrates under the same conditions as with DNA. The adducts were found only on dGMP. The total adduct level was of 344 adducts per 10(9) nucleotides with the appearance of three major adducts in the presence of arachidonic acid. With NADPH, 271 adducts were obtained per 10(9) nucleotides, with again three major adducts, but only two of them were similar to two adducts obtained in the presence of arachidonic acid. Desferal (desferrioxamine B methanesulphonate), at a 50 microM concentration, did not reduce the adduct level. Adducts were also obtained when polydG, polydC and dG-p-dG were used as alternative substrates, whereas no adducts were obtained with polydA, polydT and polydC. The major adduct obtained after incubation of DNA with OTA, comigrated with the major adduct obtained with dGMP, in two chromatographic solvents. These results show that OTA is metabolized to genotoxic metabolite(s) which interact with the guanine residues of DNA.  相似文献   

4.
Chinese herbs nephropathy (CHN), a unique type of nephropathy has been associated with the intake of weight-reducing pills containing the Chinese herb Aristolochia fangchi. Moreover, an association between the use of A. fangchi and urothelial cancer in CHN patients has been reported indicating that aristolochic acid (AA) the major alkaloid of A. fangchi might be the causal agent. Similarities of CHN to the Balkan endemic nephropathy (BEN) have led to the hypothesis of a common etiological agent for both diseases. Evidence has accumulated that BEN is an environmentally-induced disease strongly associated with the fungal mycotoxin ochratoxin A (OTA). Both, AA and OTA are nephrotoxic and carcinogenic and induce the formation of DNA adducts. As OTA has been suspected as fungal contaminant in the herbal batches used for the preparation of the weight-reducing pills we analysed tissues from CHN patients by the 32P-postlabeling procedure for the presence of DNA adducts related to both OTA and AA exposure. Whereas, AA-specific DNA adducts were detected in all five urinary tract tissues from five patients (total RAL: 32-251 adducts per 10(9) nucleotides), OTA-related DNA adducts were detectable in two kidneys and one ureter only (total RAL: 1.5-3.7 adducts per 10(9) nucleotides). Thus, OTA-related DNA adduct levels were about 50 times lower than AA-DNA adduct levels. In female and male rats that were treated with the slimming regimen in the same way like the CHN patients except that the amount of Chinese herbs was 10 times higher, AA-DNA adducts were found in kidney tissues (total RAL ranging from 51 to 83 adducts per 10(9) nucleotides) but adducts derived from OTA were not observed. These results demonstrate that OTA-related DNA adducts do not play a key role in CHN or CHN-associated urothelial cancer.  相似文献   

5.
We used 32P-postlabelling to compare DNA binding between the potent hepatocarcinogen 2,6-dinitrotoluene and its noncarcinogenic analog 2,6-diaminotoluene. The two compounds were compared to determine whether differences in DNA binding could partly explain the differences in their carcinogenicity. Fischer-344 rats were administered 1.2 mmol/kg of a compound by single i.p. injection and examined for DNA adduct formation in the liver. Four adducts were detected following administration of 2,6-dinitrotoluene, with a total adduct yield of 13.5 adducted nucleotides per 107 nucleotides. Qualitatively identical adducts were also detected after treatment with the derivative 2-amino-6-nitrotoluene. Adduct yields from 2,6-dinitrotoluene were 30 times greater than from 2-amino-6-nitrotoluene. No adducts were observed following treatment with 2,6-diaminotoluene. 2,6-Dinitrotoluene and 2,6-diaminotoluene were also compared for qualitative differences in hepatotoxicity. 2,6-Dinitrotoluene produced extensive hemorrhagic necrosis in the liver, whereas no evidence of hepatocellular necrosis was detected following administration of the latter. The differences between the two compounds in both DNA binding and cytotoxicity were consistent with the differences in their carcinogenicity.  相似文献   

6.
Fresh human endometrial explants were incubated for 24h at 37 degrees C with either tamoxifen (10-100 micro M) or the vehicle (0.1% ethanol). Three metabolites namely, alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen were identified in the culture media. Tissue size was limited but DNA adducts formed by the alpha-hydroxytamoxifen pathway were detected using authentic alpha-(deoxyguanosyl-N(2)) tamoxifen standards. Relative DNA-adduct levels of 2.45, 1.12, and 0.44 per 10(6) nucleotides were detected following incubations with 100, 25, and 10 micro M tamoxifen, respectively. The concurrent exposure of the explants to 100 micro M tamoxifen with 1mM ascorbic acid reduced the level of alpha-hydroxytamoxifen substantially (68.9%). The formation of tamoxifen-DNA adducts detectable in the explants from the same specimens exposed to 100 micro M tamoxifen with 1mM ascorbic acid were also inhibited. These results support the role of oxidative biotransformation of tamoxifen in the subsequent formation of DNA adducts in this tissue.  相似文献   

7.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

8.
Heterocyclic amine-DNA adducts analyzed by 32P-postlabeling method   总被引:1,自引:0,他引:1  
DNA adducts formed by 12 heterocyclic amines were analyzed by 32P-postlabeling method. Several DNA adducts were detected in rat liver by administration of each heterocyclic amine. Total adduct levels ranged from 0.5 for 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to more than 250 for 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) per 10(7) nucleotides 24 hr after intragastric administration of these compounds. The N-hydroxy derivative of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was reactive toward DNA in vitro to form adducts. Addition of acetic anhydride to N-OH-MeIQx greatly enhanced its reactivity to DNA. 32P-Postlabeling analysis revealed that the MeIQx-DNA adducts formed in vivo and in vitro were identical. Thus, MeIQx would be metabolized in vivo to N-hydroxy form and further esterified to produce more reactive species, such as N-acetoxy form, which modify DNA to form adducts.  相似文献   

9.
Blood samples were volunteered by workers in a Finnish iron foundry who were occupationally exposed to polycyclic aromatic hydrocarbons and from control subjects not known to be occupationally exposed to this class of chemical carcinogens. DNA was isolated from peripheral white blood cells and digested with micrococcal nuclease, spleen phosphodiesterase and nuclease P1. The DNA digest was then incubated with [gamma-32P]ATP and polynucleotide kinase. Aromatic adducts present in the digest that were resistant to nuclease P1 were thus 32P-labelled while unmodified nucleotides were not. The 32P-labelled adducts were resolved by t.l.c. and detected by autoradiography. Foundry workers were classified as belonging to high, medium or low exposure groups according to their exposure to airborne benzo[a]pyrene (high greater than 0.2, medium 0.05-0.2, low less than 0.05 microgram BP/m3 air). Aromatic adducts were found to be present in DNA from 3/4 samples from the high exposure group, 8/10 samples from the medium exposure group. 4/18 samples from the low exposure group and 1/9 samples from the unexposed controls. The levels of adducts found in the high and medium group samples ranged up to 1 adduct in 10(7) nucleotides but the levels formed in the low exposure group samples were not significantly different from those in unexposed controls. No differences related to the smoking habits of the subjects were observed. Most of the DNA adducts detected had chromatographic mobilities distinct from those formed when the 7,8-diol 9,10-oxide of BP reacted with DNA. The results indicate that highly-exposed individuals are more likely to contain aromatic DNA adducts in their white blood cells, but large interindividual variations were evident. In addition, multiple samples from the same subjects indicate that qualitative and quantitative changes in adduct patterns occur with time. This pilot study suggests that 32P-postlabelling may be useful in monitoring human exposure to known and to previously unidentified environmental genotoxic agents.  相似文献   

10.
A study employing several biomarkers of styrene exposure and genotoxicity was carried out in a group of lamination (reinforced plastic) workers and controls, who had been repeatedly sampled during a 3-year period. Special attention will be paid to the last sampling (S.VI), reported here for the first time. Styrene concentration in the breathing zone, monitored by personal dosimeters, and urinary mandelic acid (MA) were measured as indicators of external exposure. Blood samples were assayed for styrene-specific O6-guanine adducts in DNA, N-terminal valine adducts of styrene in haemoglobin, DNA single-strand breaks (SSB), determined by use of the single cell gel electrophoresis (Comet) assay), and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutant frequencies (MF) in T-lymphocytes. O6-styrene guanine adduct levels were significantly higher in the exposed group (5.9 +/- 4.9 adducts/10(8) dNp) as compared to laboratory controls (0.7 +/- 0.8 adducts/10(8) dNp; P = 0.001). DNA adduct levels significantly correlated with haemoglobin adducts, SSB parameters and years of employment. Styrene-induced N-terminal valine adducts were detected in the lamination workers (1.7 +/- 1.1 pmol/g globin), but not in the control group (detection limit 0.1 pmol/g globin). N-terminal valine adducts correlated strongly with external exposure indicators, DNA adducts and HPRT MF. No significant correlation was found with SSB parameters. A statistically significant difference in HPRT MF was observed between the laminators (22.3 +/- 10.6/10(6)) and laboratory controls (14.2 +/- 6.5/10(6), P = 0.039). HPRT MF in the laminators significantly correlated with styrene concentration in air, MA and haemoglobin adducts, as well as with years of employment and age of the employees. No significant difference (P = 0.450) in MF between the laminators and the factory controls was observed. Surprisingly, we detected differences in MF between sexes. When data from all measurements were combined, women showed higher MF (geometric mean 15.4 vs. 11.2 in men, P = 0.020). The styrene-exposed group exhibited significantly higher SSB parameters (tail moment (TM), tail length (TL) and the percentage of DNA in the tail (TP)) than the control group (P < 0.001). SSB parameters correlated with indicators of external exposure and with O6-styrene guanine adducts. No significant correlation was found between SSB parameters and haemoglobin adducts or HPRT MF. The data encompassing biomarkers from repeated measurements of the same population over a 3-year period are discussed with respect to the mechanisms of genotoxic effects of styrene and the interrelationship of individual biomarkers.  相似文献   

11.
Choudhury S  Pan J  Amin S  Chung FL  Roy R 《Biochemistry》2004,43(23):7514-7521
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA produces four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine (HNE-dG); background levels of these adducts have been detected in tissues of animals and humans. There is evidence to suggest that these adducts are mutagenic and involved in liver carcinogenesis in patients with Wilson's disease and in other human cancers. Here, we present biochemical evidence that in human cell nuclear extracts the HNE-dG adducts are repaired by the nucleotide excision repair (NER) pathway. To investigate the recognition and repair of HNE-dG adducts in human cell extracts, we prepared plasmid DNA substrates modified by HNE. [(32)P]-Postlabeling/HPLC determined that the HNE-dG adduct levels were approximately 1200/10(6) dG of plasmid DNA substrate. We used this substrate in an in vitro repair-synthesis assay to study the complete repair of HNE-induced DNA adducts in cell-free extracts. We observed that nuclear extracts from HeLa cells incorporated a significant amount of alpha[(32)P]dCTP in DNA that contained HNE-dG adducts by comparison with UV-irradiated DNA as the positive control. Such repair synthesis for UV damage or HNE-dG adducts did not occur in XPA cell nuclear extracts that lack the capacity for NER. However, XPA cells complemented with XPA protein restored repair synthesis for both of these adducts. To verify that HNE-dG adducts in DNA were indeed repaired, we measured HNE-dG adducts in the post-repaired DNA substrates by the [(32)P]-postlabeling/HPLC method, showing that 50-60% of HNE-dG adducts were removed from the HeLa cell nuclear extracts after 3 h at 30 degrees C. The repair kinetics indicated that the excision rate is faster than the rate of gap-filling/DNA synthesis. Furthermore, the HNE-dG adduct isomers 2 and 4 appeared to be repaired more efficiently at early time points than isomers 1 and 3.  相似文献   

12.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

13.
For many years (32)P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of mass spectrometry in mind, the current research presents a new method to quantitatively purify bulky hydrophobic DNA adducts at levels that are pertinent to ongoing DNA adduct research in human health and environmental fields. This method was demonstrated with benzo[a]pyrene adducts. Purification was accomplished with the use of small columns (7.5-mm frits) with an 11 mg bed of polystyrene-divinlybenzene beads which retained the adducts while permitting the nonadducted nucleotides to be washed out with water. Subsequently, the adducts were eluted with 50% MeOH and the sample was reduced in volume in an evacuated centrifuge. Purification was demonstrated at adduct levels ranging from 4 adducts in 10(6) nonadducted nucleotides to 4 in 10(8). For these levels, analyses by capillary electrophoresis with sample stacking and UV detection determined that recoveries ranged from 91 to 54%, respectively. The adduct quantities isolated should be sufficient to allow the use of current MS capabilities that are linked on-line to separation methodologies such as capillary electrophoresis, capillary electrochromatography, and high-pressure liquid chromatography.  相似文献   

14.
Depurinating DNA adducts formed by aromatic hydrocarbons and catechol estrogen quinones play a major role in cancer initiation. Most of these adducts depurinate instantaneously, but some guanine adducts depurinate from DNA with half-lives of hours. We report here, that after 10 h at 37 °C, reaction of estradiol-3,4-quinone (E(2)-3,4-Q) with ds-DNA to yield N7Gua and N3Ade adducts was complete and more efficient than with ss-DNA. When E(2)-3,4-Q reacted with t-RNA, no adducts were detected after 10 h, and the level of N3Ade and N7Gua adducts after 10 days was less than half that with ss-DNA after 10 h. Reaction of E(2)-3,4-Q and dG yielded 4-OHE(2)-1-N7dG, which spontaneously depurinated to yield 4-OHE(2)-1-N7Gua. To investigate the mechanism of depurination, E(2)-3,4-Q was reacted with carbocyclicdeoxyguanosine, in which the ring oxygen of the deoxyribose moiety is substituted with CH(2) , and depurination was observed. The results from this experiment demonstrate that the oxocarbenium ion mechanism plays the major role in depurination and provides the first experimental evidence for this mechanism. A newly discovered β-elimination mechanism also plays a minor role in depurination. Understanding why the depurinating estrogen-DNA adducts come from DNA, and not from RNA, underscores the critical role that these adducts play in initiating cancer.  相似文献   

15.
The sensitivity of various methods suitable for biomonitoring the exposure to genotoxicants was compared in an animal model. The results were related to the presence of genotoxic effects in the target organ. Groups of male Wistar rats were given one oral dose of 0, 0.1, 10 or 200 mg 2-acetylaminofluorene (2-AAF)/5 ml dimethyl sulphoxide/kg body weight. Peripheral blood cells, excreta, liver and spleen were collected at different time intervals after dosing. Mutagenicity in urine and extracts of faeces was determined using the Ames test with Salmonella typhimurium TA98 with and without S9 and with and without beta-glucuronidase. Genotoxic effects were studied by measuring DNA-adduct formation in lymphocytes, liver and spleen, and sister-chromatid exchanges (SCEs) in lymphocytes. DNA adducts were measured with immunochemical techniques and postlabelling methods. Mutagenicity in urine and faeces, collected during the first 24 h after treatment, was detected at 2-AAF doses of 1 mg/kg b.w. and higher. At these doses DNA adducts also became apparent in the liver, the main target organ for tumour induction by 2-AAF. The adduct detected appeared to be the N-(deoxyguanosin-8-yl)-2-AAF adduct. There was no evidence of the presence of any other types of DNA adducts. At doses of 1 and 10 mg/kg b.w. no mutagenicity was detected in excreta collected during the second and third day after dosing. The DNA-adduct level in liver cells of the 1 mg/kg b.w. group was maximal 24 h after dosing. At 200 mg/kg b.w. a delay in excretion of mutagenicity with urine and faeces was seen and at 10 and 200 mg/kg b.w. the amount of DNA adducts continued to increase with time after dosing. At 24 and 48 h after treatment with 10 mg, the adduct levels were of the same order of magnitude as those found after the 20-fold higher dose. This points to overloading of the metabolizing system which in combination with the enterohepatic circulation, may lead to an increased retention of 2-AAF in the body. A slightly increased incidence of SCEs of doubtful significance was seen in lymphocytes, but only at the very high dose of 200 mg/kg b.w. No DNA adducts could be detected in blood lymphocytes or spleen cells at any of the dose levels applied, either with the immunochemical or with the postlabelling method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Formation of estrogen metabolites that react with DNA is thought to be a mechanism of cancer initiation by estrogens. The estrogens estrone (E1) and estradiol (E2) can form catechol estrogen (CE) metabolites, catechol estrogen quinones [E1(E2)-3,4-Q], which react with DNA to form predominantly depurinating adducts. This may lead to mutations that initiate cancer. Catechol-O-methyltransferase (COMT) catalyzes an inactivation (protective) pathway for CE. This study investigated the effect of inhibiting COMT activity on the levels of depurinating 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua adducts in human breast epithelial cells. MCF-10F cells were treated with TCDD, a cytochrome P450 inducer, then with E2 and Ro41-0960, a COMT inhibitor. Estrogen metabolites and depurinating DNA adducts in culture medium were analyzed by HPLC with electrochemical detection. Pre-treatment of cells with TCDD increased E2 metabolism to 4-OHE1(E2) and 4-OCH3E1(E2). Inclusion of Ro41-0960 and E2 in the medium blocked formation of methoxy CE, and depurinating adducts were observed. With Ro41-0960, more adducts were detected in MCF-10F cells exposed to 1 μM E2, whereas without the inhibitor, no increases in adducts were detected with E2 ≤ 10 μM. We conclude that low COMT activity and increased formation of depurinating adducts can be critical factors leading to initiation of breast cancer.  相似文献   

17.
Acellular assay of calf thymus DNA ± rat liver microsomal S9 fraction coupled with 32P-postlabelling was used to study the genotoxic potential of organic compounds bound onto PM10 particles collected in three European cities—Prague (CZ), Kosice (SK) and Sofia (BG) during summer and winter periods. B[a]P alone induced DNA adduct levels ranging from 4.8 to 768 adducts/108 nucleotides in the concentration dependent manner. However, a mixture of 8 c-PAHs with equimolar doses of B[a]P induced 3.7–757 adducts/108 nucleotides, thus suggesting the inhibition of DNA adduct forming activity by interaction among various PAHs. Comparison of DNA adduct levels induced by various EOMs indicates higher variability among seasons than among localities. DNA adduct levels for Prague collection site varied from 19 to 166 adducts/108 nucleotides, for Kosice from 22 to 85 and for Sofia from 6 to 144 adducts/108 nucleotides. Bioactivation with S9 microsomal fraction caused 2- to 7-fold increase in DNA adduct levels compared to −S9 samples, suggesting a crucial role of indirectly acting genotoxic EOM components, such as PAHs. We have demonstrated for the first time a significant positive correlation between B[a]P content in EOMs and total DNA adduct levels detected in the EOM treated samples (R = 0.83; p = 0.04). These results suggest that B[a]P content in EOM is an important factor for the total genotoxic potential of EOM and/or B[a]P is a good indicator of the presence of other genotoxic compounds causing DNA adducts. Even stronger correlation between the content of genotoxic compounds in EOMs and total DNA adduct levels detected (R = 0.94; p = 0.005) was found when eight c-PAHs were taken into the consideration. Our findings support a hypothesis that a relatively limited number of EOM components is responsible for a major part of its genotoxicity detectable as DNA adducts by 32P-postlabelling.  相似文献   

18.
Formation of adriamycin--DNA adducts in vitro.   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

19.
Aluminium production plant workers are exposed to a great number of airborne polycyclic aromatic hydrocarbons and epidemiological studies suggest that these workers are at increased risk of lung and bladder cancer. Blood samples from 46 workers at 2 primary aluminium plants and from 29 occupationally unexposed control individuals were analysed. DNA was isolated from the peripheral blood lymphocytes and aromatic DNA adducts were detected by 32P-postlabelling assay using the nuclease P1 digestion procedure for the enrichment of the adducts. The total levels of DNA adducts of exposed individuals varied from the detection limit of about 0.5 adducts/10(8) nucleotides up to 7.1 adducts/10(8) nucleotides and control adduct levels were up to 2.42 adducts/10(8) nucleotides. There was no significant difference between the mean adduct levels of the control group and of the individuals of one plant. However, the mean DNA adduct level obtained from workers of the second plant was significantly higher than that of the controls (p less than 0.001) and of the first plant (p less than 0.01), respectively. This difference can be attributed to differences in the design of technology and different levels of exposure at the 2 plants. The results of this study encourage further investigations of the use of peripheral white blood cells as marker cells and of 32P-postlabelling analysis for monitoring occupational exposure to mixtures of environmental carcinogenic pollutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号