首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
We have developed an 125I-labeled F-actin blot overlay assay for the identification of F-actin-binding proteins after transfer to nitrocellulose from SDS-polyacrylamide gels. Two major F-actin-binding proteins from Dictyostelium discoideum, a cytoplasmic 30 kDa protein and a 17 kDa integral membrane protein, and two minor membrane polypeptides of 19 kDa and 15 kDa were detected by this method. Using F-actin affinity and immunoaffinity chromatography, the 17 kDa polypeptide was identified as ponticulin, a previously described actin-binding glycoprotein from D. discoideum plasma membranes (Wuestehube, L.J., and Luna, E.J., [1987]: J. Cell Biol. 105:1741-1751). The binding of F-actin to ponticulin on blots is specific because unlabeled F-actin competes with 125I-labeled F-actin and because G-actin does not bind. Nitrocellulose-bound ponticulin displays binding characteristics similar to those of purified plasma membranes in solution, e.g., F-actin binding is sensitive to high salt and to elevated temperatures. Under optimal conditions, 125-I-labeled F-actin blot overlays are at least as sensitive as are immunoblots with an antibody specific for ponticulin. When blotted onto nitrocellulose after 2-D gel electrophoresis, all isoforms of ponticulin and of the 19 kDa and 15 kDa polypeptides appear to bind F-actin in proportion to their abundance. Thus the actin-binding activies of these proteins do not appear to be regulated by modifications that affect isoelectric point. However, the actin-binding activity of nitrocellulose-bound ponticulin is diminished when the protein is exposed to reducing agents, suggesting an involvement of disulfide bond(s) in ponticulin function. The 125I-labeled F-actin blot overlay assay also may enable us to identify F-actin-binding proteins in other cell types and should provide a convenient method for monitoring the purification of these proteins.  相似文献   

2.
《The Journal of cell biology》1994,126(6):1445-1453
Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.  相似文献   

3.
Plasma membrane association of Acanthamoeba myosin I   总被引:19,自引:15,他引:4       下载免费PDF全文
《The Journal of cell biology》1989,109(4):1519-1528
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.  相似文献   

4.
Ezrin, radixin and moesin are a family of proteins that provide a link between the plasma membrane and the cortical actin cytoskeleton. The regulated targeting of ezrin to the plasma membrane and its association with cortical F-actin are more than likely functions necessary for a number of cellular processes, such as cell adhesion, motility, morphogenesis and cell signalling. The interaction with F-actin was originally mapped to the last 34 residues of ezrin, which correspond to the last three helices (αB, αC and αD) of the C-terminal tail. We set out to identify and mutate the ezrin/F-actin binding site in order to pinpoint the role of F-actin interaction in morphological processes as well as signal transduction. We report here the generation of an ezrin mutant defective in F-actin binding. We identified four actin-binding residues, T576, K577, R579 and I580, that form a contiguous patch on the surface of the last helix, αD. Interestingly, mutagenesis of R579 also eliminated the interaction of band four-point one, ezrin, radixin, moesin homology domains (FERM) and the C-terminal tail domain, identifying a hotspot of the FERM/tail interaction. In vivo expression of the ezrin mutant defective in F-actin binding and FERM/tail interaction (R579A) altered the normal cell surface structure dramatically and inhibited cell migration. Further, we showed that ezrin/F-actin binding is required for the receptor tyrosine kinase signal transfer to the Ras/MAP kinase signalling pathway. Taken together, these observations highlight the importance of ezrin/F-actin function in the development of dynamic membrane/actin structures critical for cell shape and motility, as well as signal transduction.  相似文献   

5.
Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane.  相似文献   

6.
Ponticulin is a 17,000-dalton transmembrane glycoprotein that is involved in the binding and nucleation of actin filaments by Dictyostelium discoideum plasma membranes. The major actin-binding protein isolated from these membranes by F-actin affinity chromatography, ponticulin also binds F-actin on blot overlays. The actin-binding activity of ponticulin in vitro is identical to that observed for purified plasma membranes: it resists extraction with 0.1 N NaOH, is sensitive to high salt concentrations, and is destroyed by heat, proteolysis, and thiol reduction and alkylation. A cytoplasmic domain of ponticulin mediates binding to actin because univalent antibody fragments directed against the cytoplasmic surface of this protein inhibit 96% of the actin-membrane binding in sedimentation assays. Antibody specific for ponticulin removes both ponticulin and the ability to reconstitute actin nucleation activity from detergent extracts of solubilized plasma membranes. Levels of plasma membrane ponticulin increase 2- to 3-fold during aggregation streaming, when cells adhere to each other and are highly motile. Although present throughout the plasma membrane, ponticulin is preferentially localized to some actin-rich membrane structures, including sites of cell-cell adhesion and arched regions of the plasma membrane reminiscent of the early stages of pseudopod formation. Ponticulin also is present but not obviously enriched at phagocytic cups of log-phase amebae. These results indicate that ponticulin may function in vivo to attach and nucleate actin filaments at the cytoplasmic surface of the plasma membrane. A 17,000-dalton analogue of ponticulin has been identified in human polymorphonuclear leukocyte plasma membranes by immunoblotting and immunofluorescence microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Golgi membranes and Golgi-derived vesicles are associated with multiple cytoskeletal proteins and motors, the diversity and distribution of which have not yet been defined. Carrier vesicles were separated from Golgi membranes, using an in vitro budding assay, and different populations of vesicles were separated using sucrose density gradients. Three main populations of vesicles labeled with beta-COP, gamma-adaptin, or p200/myosin II were separated and analyzed for the presence of actin/actin-binding proteins. beta-Actin was bound to Golgi cisternae and to all populations of newly budded vesicles. Centractin was selectively associated with vesicles co-distributing with beta-COP-vesicles, while p200/myosin II (non-muscle myosin IIA) and non-muscle myosin IIB were found on different vesicle populations. Isoforms of the Tm5 tropomyosins were found on selected Golgi-derived vesicles, while other Tm isoforms did not colocalize with Tm5 indicating the association of specialized actin filaments with Golgi-derived vesicles. Golgi-derived vesicles were shown to bind to F-actin polymerized from cytosol with Jasplakinolide. Thus, newly budded, coated vesicles derived from Golgi membranes can bind to actin and are customized for differential interactions with microfilaments by the presence of selective arrays of actin-binding proteins.  相似文献   

8.
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.  相似文献   

9.
Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho family. We report here that in collecting duct CD8 cells hypotonicity-induced cell swelling resulted in deep actin reorganization, consisting of loss of stress fibers and formation of F-actin patches in membrane protrusions where the ERM protein moesin was recruited. Cell swelling increased the interaction between actin and moesin and induced the transition of moesin from an oligomeric to a monomeric functional conformation, characterized by both the COOH- and NH2-terminal domains being exposed. In this conformation, which is stabilized by phosphorylation of a conserved threonine in the COOH-terminal domain by PKC or Rho kinase, moesin can bind interacting proteins. Interestingly, hypotonic stress increased the amount of threonine-phosphorylated moesin, which was prevented by the PKC- inhibitor Gö-6976 (50 nM). In contrast, the Rho kinase inhibitor Y-27632 (1 µM) did not affect the hypotonicity-induced increase in phosphorylated moesin. The present data represent the first evidence that hypotonicity-induced actin remodeling is associated with phosphorylated moesin recruitment at the cell border and interaction with actin. ezrin/radixin/moesin; protein kinase C; Rho  相似文献   

10.
The highly homologous ERM (ezrin/radixin/moesin) proteins, molecular cross-linkers which connect the cell membrane with the underlying cytoskeleton, have molecular weights of 81, 80 and 78 kDa respectively. We present data which shows significant variation in the molecular weight and presence of multiple forms of ERM proteins in different cell lines, such that specific antibodies to each protein are essential for unambiguous detection. Biochemical fractionation of MDCK cells demonstrates that although the individual ERM fractionation patterns are unaltered by cell density, the multiple forms of moesin each associate with different subcellular fractions. Since ERM proteins can exist in dormant or active conformations corresponding to their phosphorylation state, we propose that the partitioning of ERM proteins between subcellular compartments may depend on their activation status. In addition, we show that when the co-localization between ezrin and F-actin is disrupted by cytochalasin D, MDCK cells undergo a dramatic morphology change during which long, branching, ezrin-rich protrusions are formed. Consistent with other workers, our data suggest that maintenance of ezrin:F-actin interactions are required for the maintenance of normal cellular morphology.  相似文献   

11.
Interactions between cellular proteins and filamentous (F) actin are key to many cellular functions, e.g., cell motility, endocytosis, cell:cell adhesion, and cell:substrate adhesion. Previously, a functional assay using 125I-labeled F-actin to detect a subset of F-actin binding proteins by blot overlay was developed. We have modified this assay to use the fluorescent label, Alexa 488, in place of 125Iodine. The detection limit for Alexa 488-labeled actin using a Molecular Dynamics STORM 860 Fluorescence/PhosphorImager was as little as 100pg of labeled actin. The Alexa 488 F-actin assay detects the same proteins from Dictyostelium discoideum and with approximately the same sensitivity (approximately 10 microg/ml F-actin final concentration) as the analogous 125I-labeled F-actin blot overlay. The use of Alexa 488 F-actin for blot overlay assays requires no radioactive materials and generates no hazardous waste. Assays can be performed on the laboratory bench top and the blots imaged directly with a blue laser scanner, either wet or dry. In addition, the Alexa 488 fluorophore is highly resistant to photobleaching, does not decay, and may be stored frozen or lyophilized. Alexa 488 F-actin is a stable, cost-effective, nonhazardous probe used for rapid identification of a subset of F-actin binding proteins.  相似文献   

12.
A new Mr 43,000 tropomyosin-binding protein (TMBP) has been identified in erythrocyte membranes by binding of 125I-labeled Bolton-Hunter tropomyosin to nitrocellulose blots of membrane proteins separated by sodium dodecyl sulfate-gel electrophoresis. This protein is not actin, because 125I-tropomyosin does not bind to purified actin on blots. Binding of 125I-tropomyosin to this protein is specific because it is inhibited by excess unlabeled tropomyosin but not by F-actin or muscle troponins. This protein has been purified to 95% homogeneity from a 1 M Tris extract of tropomyosin-depleted erythrocyte membranes by DEAE-cellulose and hydroxylapatite chromatography, followed by gel filtration on Ultrogel AcA 44. The purified protein has a Stokes radius of 3.9 nm and a sedimentation coefficient of 2.8 S, corresponding to a native molecular weight of 43,000. Binding of 125I-tropomyosin to the purified TMBP saturates at one tropomyosin molecule (Mr 60,000) to two Mr 43,000 TMBPs, with an affinity of about 5 X 10(-7) M. The TMBP is associated with the membrane skeleton after extraction of membranes with the non-ionic detergent, Triton X-100, and is present with respect to tropomyosin at a ratio of about one for every two tropomyosin molecules. Because there is enough tropomyosin for two tropomyosin molecules to be associated with each of the short actin filaments in the membrane skeleton, the erythrocyte membrane TMBP, together with tropomyosin, could function to restrict the number of spectrin molecules attached to each of the short actin filaments and thus specify the hexagonal symmetry of the spectrin-actin lattice. Alternatively, this TMBP could be homologous to one of the muscle troponins and might function with tropomyosin to regulate erythrocyte actomyosin-ATPase activity and influence erythrocyte shape.  相似文献   

13.
The highly conserved ERM (ezrin-radixin-moesin) family of proteins function as molecular linkers between the actin cytoskeleton and transmembrane receptors. We now provide unequivocal evidence that full-length endogenous ezrin and moesin also localise to the nucleus in two independent mammalian cell lines. All three ERM family members can localise to the nucleus upon exogenous expression of their GFP-tagged counterparts, suggesting a common family trend. Furthermore, Dmoesin, the Drosophila ERM homologue, is present in the nucleus of an insect cell line and can localise to the nucleus when exogenously expressed in MDCK cells. The nuclear localisation of endogenous ezrin and moesin is regulated by cell density and is resistant to detergent extraction, suggesting tight association with nuclear structures. Furthermore, phosphorylation in the actin-binding domain is not a prerequisite for nuclear localisation. We have identified a specific nuclear localisation sequence, which is conserved and functional in all ERM family members, implying specific regulated nuclear import. Although the precise nuclear function of the ERM proteins is unknown, these data provide further evidence that an increasing number of cytoskeletal components directly link the plasma membrane with nuclear events.  相似文献   

14.
Utrophin, like its homologue dystrophin, forms a link between the actin cytoskeleton and the extracellular matrix. We have used a new method of image analysis to reconstruct actin filaments decorated with the actin-binding domain of utrophin, which contains two calponin homology domains. We find two different modes of binding, with either one or two calponin-homology (CH) domains bound per actin subunit, and these modes are also distinguishable by their very different effects on F-actin rigidity. Both modes involve an extended conformation of the CH domains, as predicted by a previous crystal structure. The separation of these two modes has been largely dependent upon the use of our new approach to reconstruction of helical filaments. When existing information about tropomyosin, myosin, actin-depolymerizing factor, and nebulin is considered, these results suggest that many actin-binding proteins may have multiple binding sites on F-actin. The cell may use the modular CH domains found in the spectrin superfamily of actin-binding proteins to bind actin in manifold ways, allowing for complexity to arise from the interactions of a relatively few simple modules with actin.  相似文献   

15.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ~30 and ~100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

16.
Ca2+-calmodulin-dependent phosphorylation of myosin regulatory light chains by the catalytic COOH-terminal half of myosin light chain kinase (MLCK) activates myosin II in smooth and nonmuscle cells. In addition, MLCK binds to thin filaments in situ and F-actin in vitro via a specific repeat motif in its NH2 terminus at a stoichiometry of one MLCK per three actin monomers. We have investigated the structural basis of MLCK-actin interactions by negative staining and helical reconstruction. F-actin was decorated with a peptide containing the NH2-terminal 147 residues of MLCK (MLCK-147) that binds to F-actin with high affinity. MLCK-147 caused formation of F-actin rafts, and single filaments within rafts were used for structural analysis. Three-dimensional reconstructions showed MLCK density on the extreme periphery of subdomain-1 of each actin monomer forming a bridge to the periphery of subdomain-4 of the azimuthally adjacent actin. Fitting the reconstruction to the atomic model of F-actin revealed interaction of MLCK-147 close to the COOH terminus of the first actin and near residues 228-232 of the second. This unique location enables MLCK to bind to actin without interfering with the binding of any other key actin-binding proteins, including myosin, tropomyosin, caldesmon, and calponin.  相似文献   

17.
Utrophin is a large ubiquitously expressed cytoskeletal protein that is important for maturation of vertebrate neuromuscular junctions. It is highly homologous to dystrophin, the protein defective in Duchenne and Becker muscular dystrophies. Utrophin binds to the actin cytoskeleton via an N-terminal actin-binding domain, which is related to the actin-binding domains of members of the spectrin superfamily of proteins. We have determined the actin-binding properties of this utrophin domain and investigated its binding site on F-actin. An F-actin cosedimentation assay confirmed that the domain binds more tightly to beta-F-actin than to alpha-F-actin and that the full-length utrophin domain binds more tightly to both actin isoforms than a truncated construct, lacking a characteristic utrophin N-terminal extension. Both domain constructs exist in solution as compact monomers and bind to actin as 1:1 complexes. Analysis of the products of partial proteolysis of the domain in the presence of F-actin showed that the N-terminal extension was protected by binding to actin. The actin isoform dependence of utrophin binding could reflect differences at the N-termini of the actin isoforms, thus localising the utrophin-binding site on actin. The involvement of the actin N-terminus in utrophin binding was also supported by competition binding assays using myosin subfragment S1, which also binds F-actin near its N-terminus. Cross-linking studies suggested that utrophin contacts two actin monomers in the actin filament as does myosin S1. These biochemical approaches complement our structural studies and facilitate characterisation of the actin-binding properties of the utrophin actin-binding domain.  相似文献   

18.
Soluble 125I-labeled tropoelastin bound to confluent cultures of bovine ligamentum nuchae fibroblasts and to fibroblast plasma membrane preparations in a time-dependent, saturable, and reversible manner. Scatchard analysis indicates that there are approximately 2 X 10(6) binding sites/cell with a binding efficiency (Kd) of 8 X 10(-9) M. Binding of tropoelastin to cells and membranes reached equilibrium by 90 min and was reversible with 50% of specifically bound material released by 40 min. Specific binding of tropoelastin to cells pre-treated with dilute trypsin solutions was reduced significantly when compared with controls. Four polypeptides of estimated molecular masses of 67, 61, 55, and 43 kDa were obtained from detergent extracts of plasma membranes by elution affinity chromatography on elastin-Affi-Gel. Our findings establish that elastin-specific binding proteins displaying characteristics of a true receptor are present on the surface of elastin-producing cells.  相似文献   

19.
Cell motility, adhesion, and actin cytoskeletal rearrangements occur upon integrin-engagement to the extracellular matrix and activation of the small family of Rho GTPases, RhoA, Rac1, and Cdc42. The activity of the GTPases is regulated through associations with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and guanine dissociation inhibitors (GDIs). Recent studies have demonstrated a critical role for actin-binding proteins, such as ezrin, radixin, and moesin (ERM), in modulating the activity of small GTPases through their direct associations with GEFs, GAPs, and GDI’s. Dematin, an actin binding and bundling phospho-protein was first identified and characterized from the erythrocyte membrane, and has recently been implicated in regulating cell motility, adhesion, and morphology by suppressing RhoA activation in mouse embryonic fibroblasts. Although the precise mechanism of RhoA suppression by dematin is unclear, several plausible and hypothetical models can be invoked. Dematin may bind and inhibit GEF activity, form an inactive complex with GDI-RhoA-GDP, or enhance GAP function. Dematin is the first actin-binding protein identified from the erythrocyte membrane that participates in GTPase signaling, and its broad expression suggests a conserved function in multiple tissues.  相似文献   

20.
Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号