首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The secondary structure formed in disulfide reduced alpha-lactalbumin is investigated by CD spectrum and is compared with that of the folding intermediate of the disulfide intact protein. The peptide backbone structure of the reduced protein depends strongly on salt concentration in contrast to that of the intermediate. It is close to a random coil in the absence of salt, but it is almost the same as that of the intermediate at a high concentration of salt. The secondary structures of both the proteins undergo broad unfolding transitions when temperature is raised or when urea is added. The secondary structure of the reduced protein is less stable against both heat and urea. These results show that the disulfide bonds are not a determinant of the secondary structure formed at an early stage of folding, and they stabilize the secondary structure of the folding intermediate.  相似文献   

2.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

3.
The pressure stability of horseradish peroxidase isoenzyme C and the identification of possible stabilizing factors are presented. The effect of heme substitution, removal of Ca(2+), binding of a small substrate molecule (benzohydroxamic acid), and reduction of the disulfide bonds on the pressure stability were investigated by FTIR spectroscopy. HRP was found to be extremely stable under high pressure with an unfolding midpoint of 12.0 +/- 0.1 kbar. While substitution of the heme for metal-free mesoporphyrin did not change the unfolding pressure, Ca(2+) removal and substrate binding reduced the midpoint of the unfolding by 2.0 and 1.2 kbar, respectively. The apoprotein showed a transition as high as 10.4 kbar. However, the amount of folded structure present at the atmospheric pressure was considerably lower than that in all the other forms of HRP. Reduction of the disulfide bonds led to the least pressure stable form, with an unfolding midpoint at 9.5 kbar. This, however, is still well above the average pressure stability of proteins. The high-pressure stability and the analysis of the pressure-induced spectral changes indicate that the protein has a rigid core, which is responsible for the high stability, while there are regions with less stability and more conformational mobility.  相似文献   

4.
Photoactive yellow protein (PYP) is photoconverted to its putative active form (PYP(M)) with global conformational change(s). The changes in the secondary structure were studied by far-UV circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy using PYP, which lacks N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). Irradiation of truncated PYPs induced the loss of the CD signal, where the maximal difference was located at 222 nm. The reduction of the CD signal was significantly larger than the calculated CD of the N-terminal helices, indicating that it is mainly accounted for by the unfolding and/or structural change of the helices located outside the N-terminal region. The difference FTIR spectra between dark and photosteady states recorded using the solution samples demonstrated that large absorbance changes in the amide mode of the beta-sheet were reduced and downshifted by truncation. The structural change of the beta-sheet is therefore closely correlated with the N-terminal loop. NaCl decelerates the decay of intact PYP(M) and T6(M) at low concentrations (<500 mM) but accelerates decay at high concentrations (>1000 mM). For T15(M) and T23(M), NaCl accelerates their decay at >100 mM but never decelerates their decay, suggesting that the electrostatic interaction, which plays an important role for the recovery of PYP from PYP(M), is lost by removing positions 7-15. The electrostatic interaction between this region and the beta-scaffold is likely to promote the conformational change of PYP(M) for recovery of PYP.  相似文献   

5.
The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues.  相似文献   

6.
Certain disulfide bonds present in leucocyte membrane proteins are labile and can be reduced in inflammation. This can cause structural changes that result in downstream functional effects, for example, in integrin activation. Recent studies have shown that a wide range of membrane proteins have labile disulfide bonds including CD132, the common gamma chain of the receptors for several cytokines including interleukin-2 and interleukin-4 (IL-2 and IL-4). The Cys(183)-Cys(232) disulfide bond in mouse CD132 is susceptible to reduction by enzymes such as thioredoxin (TRX), gamma interferon-inducible lysosomal thiolreductase and protein disulfide isomerase, which are commonly secreted during immune activation. The Cys(183)-Cys(232) disulfide bond is also reduced in an in vivo lipopolysaccharide (LPS)-induced acute model of inflammation. Conditions that lead to the reduction of the Cys(183)-Cys(232) disulfide bond in CD132 inhibit proliferation of an IL-2-dependent T cell clone and concomitant inhibition of the STAT-5 signalling pathway. The same reducing conditions had no effect on the proliferation of an IL-2-independent T cell clone, nor did they reduce disulfide bonds in IL-2 itself. We postulate that reduction of the Cys(183)-Cys(232) disulfide in CD132 inhibits IL-2 binding to the receptor complex. Published data show that the Cys(183)-Cys(232) disulfide bond is exposed at the surface of CD132 and in close contact with IL-2 and IL-4 in their respective receptor complexes. In addition, mutants in these Cys residues in human CD132 lead to immunodeficiency and loss of IL-2 binding. These results have wider implications for the regulation of cytokine receptors in general, as their activity can be modulated by a 'redox regulator' mechanism caused by the changes in the redox environment that occur during inflammation and activation of the immune system.  相似文献   

7.
Shigella flexneri is a facultative intracellular pathogen that causes severe gastroenteritis in humans. Invasion plasmid antigen D (IpaD) is an essential participant in Shigella invasion of intestinal cells, but no detailed structural information is available to help understand the proposed role of IpaD in invasion or its interaction with other invasion proteins. Therefore, the secondary and tertiary structure and thermal stability of IpaD as well as selected IpaD deletion mutants were investigated using Fourier transform infrared (FTIR), circular dichroism (CD), and both intrinsic and extrinsic fluorescence spectroscopies. The energetics of thermal unfolding were also evaluated by differential scanning calorimetry (DSC). Secondary-structure analysis by CD and FTIR suggests that that IpaD is primarily alpha-helical with characteristics of a intramolecular coiled coil. Thermal studies revealed that the unfolding of IpaD is a complex process consisting of two transitions centered near 59 and 80 degrees C. A comparison of the data obtained with the intact protein and selected deletion mutants indicated that the lower temperature transition is a reversible event attributable to the unfolding of a small domain located at the N terminus of IpaD. In contrast, the thermal unfolding of the proposed major and highly stable C-terminal domain was irreversible and led to protein aggregation. When the results are taken together, they strongly support the idea that IpaD has two independent folding domains.  相似文献   

8.
NAD-glycohydrolase (AA-NADase) from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities. Among all identified NADases, only AA-NADase is a disulfide-linked dimer and contains Cu(2+). Cu(2+) and disulfide bonds are essential for its multicatalytic activity. In this study, the effects of Cu(2+) and disulfide-bonds on guanidine hydrochloride (GdnHCl)- and thermal-induced unfolding of AA-NADase have been investigated by fluorescence, circular dichroism (CD) and differential scanning calorimetry (DSC). Cu(2+) and disulfide bonds not only increase the free energy change during the GdnHCl-induced unfolding as determined by fluorescence, but also increase the overall enthalpy change and the transition temperature during the thermal-induced unfolding as determined by CD and DSC. The slope of the GdnHCl-induced unfolding curve at its midpoint and the heat capacity of thermal-induced unfolding are slightly affected by Cu(2+) but significantly decrease after reduction of three disulfide-bonds. This work suggests that Cu(2+) stabilizes the folded state by increasing the enthalpy of unfolding, while disulfide-bonds stabilize the folded state by increasing the enthalpy of unfolding and stabilizing the packing of hydrophobic residues. Thus both Cu(2+) and disulfide bonds play a structural role in its multicatalytic activity.  相似文献   

9.
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl]1/2 at 3.4-5 M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1 mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys36-Cys49 and two disulfide bonds formed by two pair of consecutive cysteines, Cys22-Cys23 and Cys56-Cys57, a unique disulfide structure of polypeptide that has not been documented previously.  相似文献   

10.
Protein engineering of disulfide bonds in subtilisin BPN'   总被引:7,自引:0,他引:7  
C Mitchinson  J A Wells 《Biochemistry》1989,28(11):4807-4815
Five single-disulfide mutants were studied in subtilisin BPN', a cysteine-free, secreted serine protease from Bacillus amyloliquefaciens. The disulfides were engineered between residues 26-232, 29-119, 36-210, 41-80, and 148-243. These bonds connected a variety of secondary structural elements, located in buried or exposed positions at least 10 A from the catalytic Ser-221, and linked residues that were separated by 39 up to 206 amino acids. All disulfide bonds formed in the enzyme when the expressed protein was secreted from Bacillus subtilis, and the disulfides had only minor effects on the enzyme kinetics. Although these disulfide bonds varied by over 50-fold in their equilibrium constants for reduction with dithiothreitol, there was no correlation between the strength of the disulfide bond and the stability it imparted to the enzyme to irreversible inactivation. In some cases, the disulfide-bonded protein was stabilized greatly relative to its reduced counterpart. However, no disulfide mutant was substantially more stable than wild-type subtilisin BPN'. Some of these results can be rationalized by destabilizing effects of the cysteine mutations that disrupt interactions present in the folded enzyme structure. It is also possible that the rate of irreversible inactivation depends upon the kinetics and not the thermodynamics of unfolding and so the entropically stabilizing effect expected from a disulfide bond may not apply.  相似文献   

11.
Gekko K  Kimoto A  Kamiyama T 《Biochemistry》2003,42(46):13746-13753
To elucidate the effects of disulfide bonds on the compactness of protein molecules, the partial specific volume (v(o)) and coefficients of adiabatic compressibility (beta(s)(o)) and thermal expansibility (alpha) of five globular proteins (ovalbumin, beta-lactoglobulin, lysozyme, ribonuclease A, and bovine serum albumin) were measured in aqueous solutions with pH values of 7 and 2 at 25 degrees C when their disulfide bonds were totally reduced by carboxamidomethylation. Circular dichroism and fluorescence spectra show that the secondary and tertiary structures are partly disrupted by reduction, depending on the number of disulfide bonds in the proteins and the pH of the medium. The conformational changes are accompanied by decreases in v(o) and beta(s)(o) and by an increase in alpha, indicating that reduction decreases the internal cavity and increases surface hydration. The beta(s)(o) values of native or oxidized proteins decrease, and the effects of reduction on the volumetric parameters become more significant as the number of disulfide bonds increases and as they are formed over a larger distance in the primary structure. These results demonstrate that disulfide bonds play an important role, mainly via entropic forces, in the three-dimensional structure and compactness of protein molecules.  相似文献   

12.
Xu Q  Keiderling TA 《Biochemistry》2005,44(22):7976-7987
Conformational structure changes in concanavalin A (Con A), a legume lectin protein which is composed of 18 beta-strands, induced by dissolving in 50% trifluoroethanol (TFE) were monitored at neutral and low pH by far- and near-UV circular dichroism (CD), fluorescence, and FTIR under equilibrium conditions. Stopped-flow studies using CD and fluorescence as well as FTIR, at low and high protein concentration, respectively, were carried out to follow the time-dependent conformation changes occurring after rapid mixing of the protein with TFE. Equilibrium CD results show that, upon addition of TFE, low-concentration Con A transforms to a highly alpha-helical conformation at both neutral and low pH. However, at neutral pH under high protein concentration conditions, aggregation and precipitation are eventually detected with FTIR, indicating that a final beta-structure is attained. Stopped-flow fluorescence shows the existence of an unfolding intermediate for pH 2.0 and 4.5, which could be related to the dissociation of the dimer form. However, evidence for an intermediate is not obtained at pH 6.7, where the native protein is a tetramer. Stopped-flow FTIR is consistent with these results, indicating formation of a H(+)-stabilized intermediate alpha-helical conformation before aggregation develops. Con A in TFE provides an example of an intermediate with non-native secondary structure appearing on the unfolding pathway. On the basis of the kinetic results obtained, an unfolding mechanism is proposed and some stable intermediates are identified. In turn, the slow structural change of Con A induced by TFE provides a useful model system for study of protein unfolding due to its accessibility with several spectroscopic and kinetic tools.  相似文献   

13.
The present study characterizes the unfolding and folding processes of recombinant manganese peroxidase. This enzyme contains five disulfide bonds, two calcium ions, and one heme prosthetic group. Circular dichroism in the far UV was used to monitor global changes of the protein secondary structure, whereas UV-visible spectroscopy of the Soret band provided information about local changes in the heme cavity. The effects of reducing agents, oxidizing agents, and denaturants on this process were investigated. In addition to affecting the secondary structure content, these factors also affect the binding of the heme and the calcium ions, both of which have a significant effect on the folding process. Our results also show that denaturants induce irreversible changes, which are most likely due to the inability of the denatured protein to rebind either calcium or the heme. Breaking of disulfide bonds by 30 mM dithiothreitol causes complete unfolding of recombinant manganese peroxidase. The unfolding process was also studied at low and high pH, where the protein reaches the final unfolded state through two different intermediate states. The data also indicate that only the acidic folding-unfolding process is reversible. Our results indicate a complex synergistic relationship between the secondary structure content, the tertiary structure arrangement, and the binding of the heme and the calcium ions and disulfide bridge formation.  相似文献   

14.
The disulfide bonds of the Na(+)/glucose cotransporter (SGLT1) are believed to participate in the binding of the transport inhibitor phlorizin. Here, we investigated the role of the [560-608] disulfide bond on the phlorizin-binding function of the C-terminal loop 13 of SGLT1 using 3-iodoacetamidophlorizin (3-IAP) as a probe. The reactivity of 3-IAP to the fully reduced loop 13 was competitively inhibited by phlorizin, as evident from the MALDI mass spectra. It indicates that the disulfide bond is not mandatory for phlorizin binding. CD and equilibrium unfolding studies showed that the secondary structure and conformation stability of loop 13 were not affected by removing the disulfide bond. Furthermore, we generated a series of loop 13 mutants to assess the contribution of the disulfide bond to phlorizin binding. A positive correlation between the stability and phlorizin affinity of the mutant proteins was observed, implying that the protein stability, rather than the disulfide bond, is relevant to the phlorizin-binding function of loop 13.  相似文献   

15.
Circular dichroism (CD) and Fourier transform infrared spectroscopic studies have shown that the secondary structure of transforming growth factor alpha (TGF-alpha) is very similar to that of epidermal growth factor (EGF). The infrared spectra revealed a minor difference between the two proteins, in particular in the beta-sheet structure. A large difference was observed with CD between the two proteins in the apparent conformation each adopts when the disulfide bonds are reduced. Reduced TGF-alpha showed a distinct alpha-helical conformation only at a high trifluoroethanol concentration, whereas reduced EGF assumed an alpha-helical conformation in the absence of trifluoroethanol. This indicates that these two proteins adopt different secondary structures in the absence of disulfide bonds, although they assume similar folding structures in their presence. These data suggest that the disulfide bonds to a large degree dictate the conformation of these two proteins. Additionally, differences in the dynamic behavior between EGF and TGF-alpha were also observed. Infrared experiments showed that the hydrogen-deuterium exchange rate is much higher for TGF-alpha than for EGF, indicating that TGF-alpha is a more flexible molecule. The rate of reduction of the disulfide bonds by dithiothreitol was also faster for TGF-alpha. Therefore, it can be concluded that although EGF and TGF-alpha have a similar overall conformation, TGF-alpha is a more flexible molecule than EGF.  相似文献   

16.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

17.
Panick G  Winter R 《Biochemistry》2000,39(7):1862-1869
In this paper, we illustrate the use of high-pressure Fourier transform infrared (FT-IR) spectroscopy to study the reversible presssure-induced unfolding and refolding of ribonuclease A (RNase A) and compare it with the results obtained for the temperature-induced transition. FT-IR spectroscopy monitors changes in the secondary structural properties (amide I' band) or tertiary contacts (tyrosine band) of the protein upon pressurization or depressurization. Analysis of the amide I' spectral components reveals that the pressure-induced denaturation process sets in at 5. 5 kbar at 20 degrees C and pH 2.5. It is accompanied by an increase in disordered structures while the content of beta-sheets and alpha-helices drastically decreases. The denatured state above 7 kbar retains nonetheless some degree of beta-like secondary structure and the molecule cannot be described as an extended random coil. Increase of pH from 2.5 to 5.5 has no influence on the structure of the pressure-denatured state; it slightly changes the stability of the protein only. All experimental evidence indicates that the pressure-denatured states of monomeric proteins have more secondary structure than the temperature-denatured states. Different modes of denaturation, including pressure, may correlate differently with the roughness of the energy scale and slope of the folding funnel. For these reasons we have also carried out pressure-jump kinetic studies of the secondary structural evolution in the unfolding/refolding reaction of RNase A. In agreement with the theoretical model presented by Hummer et al. [(1998) Proc. Natl. Acad. Sci. U.S.A. 95, 1552-1555], the experimental data show that pressure slows down folding and unfolding kinetics (here 1-2 orders of magnitude), corresponding to an increasingly rough landscape. The kinetics remains non-two-state under pressure. Assuming a two-step folding scenario, the calculated relaxation times for unfolding of RNase A at 20 degrees C and pH 2.5 can be estimated to be tau(1) approximately 0.7 min and tau(2) approximately 17 min. The refolding process is considerably faster (tau(1) approximately 0.3 min, tau(2) approximately 4 min). Our data show that the pressure stability and pressure-induced unfolding/refolding kinetics of monomeric proteins, such as wild-type staphylococcal nuclease (WT SNase) and RNase A, may be significantly different. The differences are largely due to the four disulfide bonds in RNase A, which stabilize adjacent structures. They probably lead to the much higher denaturation pressure compared to SNase, and this might also explain why the volume change of WT SNase upon unfolding is about twice as large.  相似文献   

18.
Measuring the stability of integrated membrane proteins under equilibrium conditions is hampered by the nature of the proteins' amphiphilic environment. While intrinsic fluorescence is a useful probe for structural changes in water-soluble proteins, the fluorescence of membrane proteins is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS) and dodecyl maltoside (DM). This analysis incorporates both folding and unfolding rates, making it possible to determine both the stability of the native state and the process by which the protein folds. Refolding and unfolding occur on the second to millisecond timescale and involve only one relaxation phase, when monitored by conventional stopped-flow. The kinetic data indicate that denaturation occurs around 0.3 mole fraction of SDS, in agreement with CD analysis and acrylamide quenching data. The rate constants have been fit to a three-state folding scheme involving the SDS-denatured state, the native state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic data are always open to alternative interpretations, time-resolved studies in mixed micelles provide a useful approach to measure membrane protein stability over a wide range of concentrations of SDS and DM, as well as a framework for the future characterization of the DsbB folding mechanism.  相似文献   

19.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   

20.
Using single-molecule force spectroscopy we probed molecular interactions within native bovine rhodopsin and discovered structural segments of well-defined mechanical stability. Highly conserved residues among G protein-coupled receptors were located at the interior of individual structural segments, suggesting a dual role for these segments in rhodopsin. Firstly, structural segments stabilize secondary structure elements of the native protein, and secondly, they position and hold the highly conserved residues at functionally important environments. Two main classes of force curves were observed. One class corresponded to the unfolding of rhodopsin with the highly conserved Cys110-Cys187 disulfide bond remaining intact and the other class corresponded to the unfolding of the entire rhodopsin polypeptide chain. In the absence of the Cys110-Cys187 bond, the nature of certain molecular interactions within folded rhodopsin was altered. These changes highlight the structural importance of this disulfide bond and may form the basis of dysfunctions associated with its absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号