首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass approximately = 20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/microg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.  相似文献   

2.
Glutathione peroxidase activities from rat liver   总被引:1,自引:0,他引:1  
There are two enzymes in rat liver with glutathione peroxidase activity when cumene hydroperoxide is used as substrate. One is the selenium-requiring glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9) and the other appears to be independent of dietary selenium. Activities of the two enzymes vary greatly among tissues and among animals. The molecular weight of the enzyme with selenium-independent glutathione peroxidase activity was estimated by gel filtration to be 35 000, and the subunit molecular weight was estimated by dodecyl sulfate-polyacrylamide gel electrophoresis to be 17 000. Double reciprocal plots of enzyme activity as a function of substrate concentration produced intersecting lines which are suggestive of a sequential reaction mechanism. The Km for glutathione was 0.20 mM and the Km for cumene hydroperoxide was 0.57 mM. The enzyme was inhibited by N-ethylmaleimide, but not by iodoacetic acid. Inhibition by cyanide was competitive with respect to glutathione and the Ki for cyanide was 0.95 mM. This selenium-independent glutathione peroxidase also catalyzes the conjugation of glutathione to 1-chloro-2,4-dinitrobenzene. Along with other similarities to glutathione S-transferase, this suggests that the selenium-independent glutathione peroxidase and glutathione S-transferase activities in rat liver are of the same enzyme.  相似文献   

3.
A novel glutathione peroxidase, which is active toward hydroperoxides of phospholipid in the presence of a detergent, has been purified to homogeneity from a rat liver postmicrosomal supernatant fraction by ammonium sulfate fractionation and three different column chromatographies. From a DE52 column, glutathione peroxidase active toward phosphatidylcholine dilinoleoyl hydroperoxides was eluted in one major and two minor peaks. The enzyme in the major peak was found to be separated from the "classic" glutathione peroxidase and glutathione S-transferases and further purified by Sephacryl S-200 and Mono Q column chromatographies. The purified enzyme was found to be homogeneous on polyacrylamide gel electrophoresis under nondenaturing conditions as well as that in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 22,000, and that by gel filtration was comparable, indicating that the enzyme protein is a single polypeptide. The purified enzyme was found to catalyze the reduction of phosphatidylcholine dilinoleoyl hydroperoxides to the corresponding hydroxy derivatives. The isoelectric point of the enzyme was found at pH 6.2, and the optimum pH for the enzyme activity was 8.0. The enzyme was active toward cumene hydroperoxide, H2O2, and 1-monolinolein hydroperoxides in the absence of a detergent. The enzyme activity toward phospholipid hydroperoxides was minute in the absence of a detergent but was remarkably enhanced by the addition of a detergent. From these results, the presently purified enzyme is obviously different from the classic glutathione peroxidase and also from phospholipid hydroperoxide glutathione peroxidase purified from pig heart (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70), though considerably similar to the latter.  相似文献   

4.
Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity   总被引:1,自引:0,他引:1  
The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.  相似文献   

5.
Glutathione peroxidase (glutathione--H2O2 oxidoreductase; EC 1.11.1.9) was purified to homogeneity from human placenta by using (NH4)2SO4 precipitation, ion-exchange chromatography, Sephadex gel filtration and preparative polyacrylamide-disc-gel electrophoresis. Glutathione peroxidase from human placenta is a tetramer, having 4g-atoms of selenium/mol of protein. The molecular weight of the enzyme is about 85000 with a subunit size of about 22,000. Kinetic properties of the enzyme are described. On incubation with cyanide, glutathione peroxidase is completely and irreversibly inactivated and selenium is released as a low-molecular-weight fragment. Reduced glutathione, beta-mercaptoethanol and dithiothreitol protect the enzyme from inactivation by cyanide and the release of selenium. Properties of human placental glutathione peroxidase are similar to those of isoenzyme A reported earlier by us from human erythrocytes. The presence of isoenzyme, B, reported earlier by us in human erythrocytes, was not detected in placenta. Also selenium-independent glutathione peroxidase (isoenzyme II), which is specific for cumene hydroperoxide, was not present in human placenta.  相似文献   

6.
1. A glutathione S-transferase having Se-independent glutathione peroxidase activity was isolated from 100,000 g supernatant from housefly homogenate. 2. The specific activity of the partially purified Se-independent glutathione peroxidase was 1776 nmol NADPH oxidized/min/mg protein, representing an 87-fold purification. 3. The Mr of this enzyme was estimated to be 37,000 and 26,000 by gel filtration chromatography and gel electrophoresis, respectively. 4. Selenium-dependent glutathione peroxidase activity could not be detected in this same supernatant. 5. Se-independent glutathione peroxidase activity should be considered in future studies of the insect antioxidant defense system.  相似文献   

7.
We have purified two isoenzymes of glutathione S-transferase from bovine retina to apparent homogeneity through a combination of gel-filtration chromatography, affinity chromatography and isoelectric focusing. The more anionic (pI = 6.34) and less anionic (pI = 6.87) isoenzymes were comparable with respect to kinetic and structural parameters. The Km for both substrates, reduced glutathione and 1-chloro-2,4-dinitrobenzene, bilirubin inhibition of glutathione conjugation to 1-chloro-2,4-dinitrobenzene, 1-chloro-2,4-dinitrobenzene inactivation of enzyme activity and molecular weight were similar. However, pH optimum and energy of activation were found to differ considerably. Retina was found to have no selenium-dependent glutathione peroxidase activity. The total glutathione peroxidase activity fractionated with the transferases in the gel-filtration range of mol.wt. 49000 and expressed activity with only organic hydroperoxides as substrate. Only the more anionic isoenzyme expressed both transferase and peroxidase activity.  相似文献   

8.
An oxidized form of ovine erythrocyte GSH peroxidase (Form C) that contains bound glutathione in equimolar ratio to the enzyme selenium is inactivated by cyanide. When Form C was treated with 1 or 10 mM KCN at pH 7.5, there was a rapid increase in ultraviolet absorption at 250 nm, S-cyanoglutathione was released, and the enzyme was reduced, as shown by inactivation with iodoacetate (1 mM, pH 7.5) and uptake of label from [14C]iodoacetate in equimolar ratio to enzyme selenium. These observations suggest that glutathione is bound to enzyme selenium by a selenenyl-sulfide linkage (E-Se-SG) which is cleaved by cyanide to release a selenol and S-cyanoglutathione; spontaneous oxidation of the selenol to a labile oxidized form of GSH peroxidase leads to irreversible inactivation.  相似文献   

9.
Glutathione peroxidase (glutathione:hydrogen peroxide oxidoreductase, EC 1.11.1.9) was purified from rat liver mitochondria. The enzyme was shown to be pure by polyacrylamide-gel electrophoresis and to contain multiple forms that differed in charge. Selenium was specifically associated with the enzyme. The enzyme was inhibited by iodoacetic acid and iodoacetamide in an unusual pattern of reduction by sulfhydryl compounds and pH dependency. The mitochondrial and cytoplasmic forms of the enzyme were compared, and an explanation of the inhibition patterns is offered.  相似文献   

10.
Ascorbate peroxidase (APX) of the liverwort Pallavicinia lyelli was extracted and purified through ammonium sulfate precipitation, Butyl-Toyopearl, DEAE-Cellulofine and Sephadex G-75 chromatography. The purification factor for APX was 285 with 7.9% yield. The enzyme was characterized for thermal stability, pH and kinetic parameters. The molecular mass of APX was approximately 28 kDa estimated by SDS-PAGE. The purity was checked by native PAGE, showing a single prominent band. The optimum pH was 6.0. The enzyme had a temperature optimum at 40 °C and was relatively stable at 60 °C, with 54% loss of activity. When the enzyme was diluted with the ascorbate-deleted medium, the half inactivation time was approximately 15 min. The absorption spectra of the purified enzyme and the inhibition by cyanide and azide showed that it is a hemoprotein. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity and the capacity to utilize alternate electron donors. p-chloromercuribenzoate (pCMB), hydroxyurea and salicylic acid (SA) significantly inhibited APX activity. Ascorbate (AsA) and pyrogallol were found to be efficient substrates for Pallavicinia APX, considering the Vmax/Km ratio. We detected the activity of monodehydroascorbate reductase (MDHAR) involved in the regeneration of ascorbate, but failed to detect the dehydroascorbate reductase (DHAR) activity. The data obtained in this study may help to understand desiccation tolerance mechanism in the liverwort.  相似文献   

11.
Selenium-independent glutathione peroxidase was purified from a cell-free extract of Mucor hiemalis by ammonium sulfate fractionation, column chromatographies on DEAE-Sephadex and hydroxylapatite, and gel filtration on Bio-Gel P-100. The purified enzyme was homogeneous on ultracentrifugation. The enzyme had a molecular weight of 45,000 and an isoelectric point of 5.2. The enzyme could reduce cumene hydroperoxide and t-butyl hydroperoxide, but could not reduce hydrogen peroxide. The enzyme was highly specific for glutathione as a hydrogen donor. Mucor glutathione peroxidase was proved to be different from mammalian selenium-dependent glutathione peroxidase I and selenium-independent glutathione peroxidase II in some physicochemical and enzymatic properties.  相似文献   

12.
Purification and characterization of human salivary peroxidase   总被引:3,自引:0,他引:3  
Human salivary peroxidase (SPO) has been purified to homogeneity by subjecting human parotid saliva to immunoaffinity, cation exchange, and affinity chromatography. These procedures resulted in a 992-fold purification of the enzyme. When purified SPO was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), three Coomassie stainable bands were apparent, all of which stained positive for enzyme activity. The apparent molecular weights of the three bands were 78,000, 80,000, and 280,000 as analyzed by SDS-PAGE. Reduction with 2-mercaptoethanol resulted in a decreased mobility of these bands, and enzyme activity could no longer be detected on the gels. The SPO preparation had the characteristic peroxidase heme spectrum in the range 405-420 nm. The ratio between the absorbance of the Soret band (412 nm) and the absorbance at 280 nm was 0.81. The enzyme activity was inhibited by the classical peroxidase inhibitors cyanide and azide. Salivary peroxidase is similar to bovine lactoperoxidase (LPO) in amino acid composition, in ultraviolet and visible spectrum, in reaction with cyanide, in susceptibility to 2-mercaptoethanol inactivation, and in thermal stability. The two enzymes differ in carbohydrate composition and content. SPO contains 4.6% and LPO 7% total neutral sugars. The ratio of glucosamine to galactosamine is 2:1 in SPO and 3:1 in LPO. SPO contains mannose, fucose, and galactose in a molar ratio of 1.5:1.5:1.0, while the ratio was 14.9:0.5:1.0 in LPO. Glucose was present in both preparations in minor amounts. The concentration of azide required for 50% inhibition of enzyme activity was 20-fold greater for LPO than for SPO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The peroxidase activity of the mitochondrial fraction of rat intestine is inhibited in vitro by non-steroidal antiinflammatory drugs (NSAIDs), such as indomethacin (IMN) and acetylsalicylic acid (ASA), the former being more potent than the latter. The peroxidase was solubilised by cetab-NH4Cl extraction and purified to apparent homogeneity by Sephadex G-150 gel filtration and affinity chromatography on Con-A Sepharose. The purified enzyme activity was 80% inhibited by 150 μM IMN and 50% by 2.67 mM ASA. IMN could also inhibit lactoperoxidase activity to the same extent but not the horseradish peroxidase activity. The inhibition of peroxidase-catalysed iodide oxidation by IMN and ASA was optimal at pH 5.5 and 4.5, respectively. Kinetic studies revealed that the inhibition by IMN was competitive with respect to iodide or guaiacol, while the inhibition by ASA was noncompetitive and reversible in nature. Studies of some structural analogues showed that indole-3-acetic acid was as effective as IMN, while salicylic acid was more potent than ASA. Spectral studies showed a small bathochromic shift of the Soret band of the enzyme by IMN, suggesting its possible interaction at or near the heme moiety. The competitive nature of IMN may be explained as due to its oxidation by the peroxidase to a product absorbing at 412 nm, the formation of which is inhibited by iodide. We suggest that IMN inhibits intestinal peroxidase activity by acting as a competitive substrate for the enzyme. As intestinal peroxidase is mainly contributed by the invading eosinophils, NSAIDs may affect the host defence mechanism by inhibiting the activity of the enzyme.  相似文献   

14.
British Anti-Lewisite (BAL) binds to horseradish peroxidase in a manner which results in inhibition of both peroxidatic and oxidative functions of the enzyme. BAL competes with hydrogen peroxide for binding on peroxidase, and the inhibition of peroxidatic activity is irreversible. Solutions of purified horseradish peroxidase and individually resolved peroxidase isozymes show a gradual loss of peroxidatic activity with time when incubated with BAL. In these same treatments, however, the inhibition of indole-3-acetic acid (IAA) oxidase activity is immediate. With increasing amounts of enzyme in the incubation mixture, IAA oxidase activity is not completely inhibited and is observed following a lag period in the assay which shortens with longer incubation times. Peroxidase activity during this same time interval shows a lag period which increases with longer incubation times. Lowering the pH removed the lag period for oxidase activity, but did not change the pattern of peroxidase activity. These results suggest that the sites for the oxidation of indole-3-acetic acid and for peroxidatic activity may not be identical in horseradish peroxidase isozymes.  相似文献   

15.
Cytochrome oxidase vesicles catalyzed the peroxidatic oxidation of ferrocytochrome c. The maximal peroxidase activity in the absence of an uncoupling agent was 9.8 mol ferrocytochrome c oxidized/(s X mol heme a), indicating a 5-fold activation compared with the soluble enzyme system. The peroxidase activity was further enhanced 1.2 to 2.1 times upon addition of an uncoupler, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The stoichiometry of the reduction of hydrogen peroxide by ferrocytochrome c was established to be 1 : 2, indicating water formation. Potassium cyanide (0.14 mM) completely inhibited the peroxidase activity. The inhibition by 1 mM CO was 40-77% depending on the energized state of cytochrome oxidase vesicles, but in contrast, 85% inhibition was observed with the soluble enzyme. In the energized state the enzyme showed a slightly lower affinity for CO than in the deenergized state. Coupled with the peroxidase activity, a membrane potential of 72 mV was registered transiently; this may be physiologically significant in relation to the energy transduction mechanism.  相似文献   

16.
The effects of a heme ligand, cyanide, on pure ovine prostaglandin H synthase have been examined in detail as one approach to elucidating the role of the heme cofactor in cyclooxygenase and peroxidase catalysis by the synthase. Cyanide bound to the synthase heme with an affinity (Kd) of 0.19 mM, and inhibited the peroxidase activity of the synthase, with a KI value of 0.23 mM. Cyanide increased the sensitivity of the cyclooxygenase to inhibition by the peroxide scavenger, glutathione peroxidase. This increased sensitivity to inhibition reflected an increase in the level of peroxide required to activate the cyclooxygenase, from 21 nM in absence of cyanide to over 300 nM when 2.5 mM cyanide was present. The increase in peroxide activator requirement with increasing cyanide concentration closely paralleled the formation of the holoenzyme-cyanide complex. These effects of low levels of cyanide suggest that the heme prosthetic group of the synthase participates in the efficient activation of the cyclooxygenase by peroxide. Cyanide blocked the stimulation of cyclooxygenase velocity by phenol, but not the phenol-induced increase in overall oxygen consumption. This blockade by cyanide was noncompetitive with respect to phenol and was characterized by a KI of 4 mM. The higher KI value for this effect suggests that cyanide can also interact at a site other than the heme prosthetic group. The role of the heme prosthetic group in promoting efficient activation of the cyclooxygenase by peroxide appears to be central to the ability of the synthase to amplify the ambient peroxide concentration rapidly.  相似文献   

17.
Beta-cyanoalanine synthase (beta-cyano-l-alanine synthase; l-cysteine: hydrogen sulphide lyase (adding hydrogen cyanide (HCN)); EC 4. 4.1.9) was purified from the cytosolic fraction of the gut of grasshopper Zonocerus variegatus (L.) by ion-exchange chromatography on DEAE-Cellulose and gel filtration on Sephadex G-100 columns. The crude enzyme had a specific activity of 2.16nmol H2S/min/mg. A purified enzyme with a specific activity, which was seventeen times higher than that of the crude extract, was obtained. A molecular weight of about 55.23+/-1.00Kd was estimated from its elution volume on Sephadex G-100. The fraction when subjected to sodium dodecyl sulphate-polyacrylamide elel electrophoresis revealed the presence of a protein band with Mr of 23.25+/-0.25Kd. The enzyme exhibited Michaelis-Menten kinetics having Km of 0.38mM for l-cysteine and Km of 6.25mM for cyanide. The optimum temperature and pH for activity were determined to be at 30 degrees C and pH 9.0, respectively. This enzyme might be responsible for the ability to detoxify cyanide in this insect pest and hence its tolerance of the cyanogenic cassava plant. Biophysical, biochemical and kinetic properties of this enzyme, which will reveal how this ability can possibly be compromised by enzyme inhibition, may lead, in the long term, to the potential use of this enzyme as drug target for pest control.  相似文献   

18.
The effects of Triton X-100, deoxycholate, and fatty acids were studied on the two steps of the ping-pong reaction catalyzed by Se-dependent glutathione peroxidases. The study was carried out by analyzing the single progression curves where the specific glutathione oxidation was monitored using glutathione reductase and NADPH. While the "classic" glutathione peroxidase was inhibited only by Triton, the newly discovered "phospholipid hydroperoxide glutathione peroxidase" was inhibited by deoxycholate and by unsaturated fatty acids. The kinetic analysis showed that in the case of glutathione peroxidase only the interaction of the lipophilic peroxidic substrate was hampered by Triton, indicating that the enzyme is not active at the interface. Phospholipid hydroperoxide glutathione peroxidase activity measured with linoleic acid hydroperoxide as substrate, on the other hand, was not stimulated by the Triton concentrations which have been shown to stimulate the activity on phospholipid hydroperoxides. Furthermore a slight inhibition was apparent at high Triton concentrations and the effect could be attributed to a surface dilution of the substrate. Deoxycholate and unsaturated fatty acids were not inhibitory on glutathione peroxidase but inhibited both steps of the peroxidic reaction of phospholipid hydroperoxide glutathione peroxidase, in the presence of either amphiphilic or hydrophilic substrates. This inhibition pattern suggests an interaction of anionic detergents with the active site of this enzyme. These results are in agreement with the different roles played by these peroxidases in the control of lipid peroxide concentrations in the cells. While glutathione peroxidase reduces the peroxides in the water phase (mainly hydrogen peroxide), the new peroxidase reduces the amphyphilic peroxides, possibly at the water-lipid interface.  相似文献   

19.
We have shown that human spermatozoa generate and release reactive oxygen species that can be detected by chemiluminescence techniques. Analysis of the cellular mechanisms responsible for this activity suggests that the probe, luminol, undergoes an intracellular dioxygenation reaction mediated by hydrogen peroxide and a sperm peroxidase located within the acrosome. Support for this model included the following observations: (1) the luminol-dependent signal could be suppressed with peroxidase inhibitors, phenylhydrazine and sodium azide; (2) this suppression could be reversed by the addition of an azide-insensitive peroxidase, horse radish peroxidase (HRP); (3) inhibition of intracellular superoxide dismutase (SOD) with potassium cyanide (KCN) suppressed the luminol signal; (4) peroxidase activity could be detected in purified populations of human spermatozoa with 3,3',5,5' tetramethylbenzidine (TMB); (5) this peroxidase was active at the pH prevailing within the acrosomal vesicle; and (6) peroxidase activity and luminol-dependent chemiluminescence were minimal in spermatozoa exhibiting a congenital absence of acrosomes. Human spermatozoa could also generate lucigenin-dependent chemiluminescent signals that could neither be suppressed with peroxidase inhibitors nor enhanced by the addition of peroxidase. However, these signals could be enhanced by suppression of intracellular SOD with KCN or inhibited by exogenous SOD, suggesting that lucigenin was responding to superoxide anion released into the extracellular space. The ability of chemiluminescent techniques to detect and discriminate the production of superoxide and hydrogen peroxide by spermatozoa should facilitate the further analysis of reactive oxygen species as mediators of normal and abnormal human sperm function.  相似文献   

20.
The effects of a heme ligand, cyanide, on pure ovine prostaglandin H synthase have been examined in detail as one approach to elucidating the role of the heme cofactor in cyclooxygenase and peroxidase catalysis by the synthase. Cyanide bound to the synthase heme with an affinity (Kd) of 0.19 mM, and inhibited the peroxidase activity of the synthase, with a KI value of 0.23 mM. Cyanide increased the sensitivity of the cyclooxygenase to inhibition by the peroxide scavenger, glutathione peroxidase. This increased sensitivity to inhibition reflect and increase in the level of peroxide required to activate the cyclooxygenase, from 21 nM in absence of cyanide to over 300 nM when 2.5 mM cyanide was present. The increase in peroxide activator requirement with increasing cyanide concentration closely paralleled the formation of the holoenzyme-cyanide complex. These effects of low levels of cyanide suggest that the heme prosthetic group of the synthase participates in the efficient activation of the cyclooxygenase by peroxide. Cyanide blocked the stimulation of cyclooxygenase velocity by phenol, but not the phenol-induced increase in overall oxygen consumption. This blockade by cyanide was noncompetitive with respect to phenol and was characterized by a KI of 4 mM. The higher KI value for this effect suggests that cyanide can also interact at a site other than the heme prosthetic group. The role of the heme prosthetic group in promoting efficient activation of the cyclooxygenase by peroxide appears to be central to the ability of the synthase to amplify the ambient peroxide concentration rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号