首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work an Escherichia coli metabolically engineered to ferment lignocellulosic biomass sugars to succinic acid was tested for growth and fermentation of detoxified softwood dilute sulfuric acid hydrolyzates, and the minimum detoxification requirements were investigated with activated carbon and/or overliming treatments. Detoxified hydrolyzates supported fast growth and complete fermentation of all hydrolyzate sugars to succinate at yields comparable to pure sugar, while untreated hydrolyzates were unable to support either growth or fermentation. Activated carbon treatment was able to remove significantly more HMF and phenolics than overliming. However, in some cases, overliming treatment was capable of generating a fermentable hydrolyzate where activated carbon treatment was not. The implications of this are that in addition to the known organic inhibitors, the changes in the inorganic content and/or composition due to overliming are significant to the hydrolyzate toxicity. It was also found that any HMF remaining after detoxification was completely metabolized during aerobic cell growth on the hydrolyzates that were capable of supporting growth.  相似文献   

2.
Detoxification of dilute acid hydrolysates of lignocellulose with lime   总被引:2,自引:0,他引:2  
The hydrolysis of hemicellulose to monomeric sugars by dilute acid hydrolysis is accompanied by the production of inhibitors that retard microbial fermentation. Treatment of hot hydrolysate with Ca(OH)(2) (overliming) is an effective method for detoxification. Using ethanologenic Escherichia coli LY01 as the biocatalyst, our results indicate that the optimal lime addition for detoxification varies and depends on the concentration of mineral acids and organic acids in each hydrolysate. This optimum was shown to be readily predicted on the basis of the titration of hydrolysate with 2 N NaOH at ambient temperature to either pH 7.0 or pH 11.0. The average composition of 15 hydrolysates prior to treatment was as follows (per L): 95.24 +/- 7.29 g sugar, 5.3 +/- 2.99 g acetic acid, 1.305 +/- 0.288 g total furans (furfural and hydroxymethylfurfural), and 2.86 +/- 0.34 g phenolic compounds. Optimal overliming resulted in a 51 +/- 9% reduction of total furans, a 41 +/- 6% reduction in phenolic compounds, and a 8.7 +/- 4.5% decline in sugar. Acetic acid levels were unchanged. Considering the similarity of microorganisms, it is possible that the titration method described here may also prove useful for detoxification and fermentation processes using other microbial biocatalysts.  相似文献   

3.
Sugarcane bagasse hydrolysis with 2.5% (v/v) HCl yielded 30.29g/L total reducing sugars along with various fermentation inhibitors such as furans, phenolics and acetic acid. The acid hydrolysate when treated with anion exchange resin brought about maximum reduction in furans (63.4%) and total phenolics (75.8%). Treatment of hydrolysate with activated charcoal caused 38.7% and 57.5% reduction in furans and total phenolics, respectively. Laccase reduced total phenolics (77.5%) without affecting furans and acetic acid content in the hydrolysate. Fermentation of these hydrolysates with Candida shehatae NCIM 3501 showed maximum ethanol yield (0.48g/g) from ion exchange treated hydrolysate, followed by activated charcoal (0.42g/g), laccase (0.37g/g), overliming (0.30g/g) and neutralized hydrolysate (0.22g/g).  相似文献   

4.
The rates and extents of enzymatic cellulose hydrolysis of dilute acid pretreated corn stover (PCS) decline with increasing slurry concentration. However, mass transfer limitations are not apparent until insoluble solids concentrations approach 20% w/w, indicating that inhibition of enzyme hydrolysis at lower solids concentrations is primarily due to soluble components. Consequently, the inhibitory effects of pH-adjusted pretreatment liquor on the enzymatic hydrolysis of PCS were investigated. A response surface methodology (RSM) was applied to empirically model how hydrolysis performance varied as a function of enzyme loading (12-40mg protein/g cellulose) and insoluble solids concentration (5-13%) in full-slurry hydrolyzates. Factorial design and analysis of variance (ANOVA) were also used to assess the contribution of the major classes of soluble components (acetic acid, phenolics, furans, sugars) to total inhibition. High sugar concentrations (130g/L total initial background sugars) were shown to be the primary cause of performance inhibition, with acetic acid (15g/L) only slightly inhibiting enzymatic hydrolysis and phenolic compounds (9g/L total including vanillin, syringaldehyde, and 4-hydroxycinnamic acid) and furans (8g/L total of furfural and hydroxymethylfurfural, HMF) with only a minor effect on reaction kinetics. It was also demonstrated that this enzyme inhibition in high-solids PCS slurries can be approximated using a synthetic hydrolyzate composed of pure sugars supplemented with a mixture of acetic acid, furans, and phenolic compounds, which indicates that generally all of the reaction rate-determining soluble compounds for this system can be approximated synthetically.  相似文献   

5.
Lantana camara for fuel ethanol production using thermotolerant yeast   总被引:1,自引:0,他引:1  
AIM: Evaluation of Lantana camara's use as feedstock for fuel ethanol production. METHODS AND RESULTS: Lantana camara plant material was hydrolysed with 1% sulfuric acid for 18 h at room temperature, followed by heat treatment of 121 degrees C for 20 min. Hemicellulosic hydrolyzate was separated and used for detoxification by ethyl acetate and overliming. Cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 55 degrees C. Using 15% (dw/v) substrate 73 g l(-1) total reducing sugars were obtained to give 78.7% hydrolysis of carbohydrate content. Acid and enzyme hydrolyzates were mixed equally and used for fermentation with thermotolerant Saccharomyces cerevisiae (VS(3)). Yeast fermented L. camara hydrolyzate well with a fermentation efficiency of 83.7% to give an ethanol yield of 0.431 +/- 0.018 g ethanol pre g sugar and productivity of 0.5 +/- 0.021 g l(-1) h(-1). CONCLUSIONS: Even though inhibitors were present in L. camara hydrolyzate, maximum sugars were utilized by thermotolerant yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of L. camara for fuel ethanol production with improved strains and detoxification can be recommended.  相似文献   

6.
Hemicellulose syrups from dilute sulfuric acid hydrolysates of hemicellulose contain inhibitors that prevent efficient fermentation by yeast or bacteria. It is well known that the toxicity of these hydrolysate syrups can be ameliorated by optimized "overliming" with Ca(OH)(2). We have investigated the optimization of overliming treatments for sugar cane bagasse hydrolysates (primarily pentose sugars) using recombinant Escherichia coli LY01 as the biocatalyst. A comparison of composition before and after optimal overliming revealed a substantial reduction in furfural, hydroxymethylfurfural, and three unidentified high-performance liquid chromatography (HPLC) peaks. Organic acids (acetic, formic, levulinic) were not affected. Similar changes have been reported after overliming of spruce hemicellulose hydrolysates (Larsson et al., 1999). Our studies further demonstrated that the extent of furan reduction correlated with increasing fermentability. However, furan reduction was not the sole cause for reduced toxicity. After optimal overliming, bagasse hydrolysate was rapidly and efficiently fermented (>90% yield) by LY01. During these studies, titration, and conductivity were found to be in excellent agreement as methods to estimate sulfuric acid content. Titration was also found to provide an estimate of total organic acids in hydrolysate, which agreed well with the sum of acetic, levulinic, and formic acids obtained by HPLC. Titration of acids, measurement of pH before and after treatment, and furan analyses are proposed as relatively simple methods to monitor the reproducibility of hydrolysate preparations and the effectiveness of overliming treatments.  相似文献   

7.
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g L?1) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250–300 g L?1. This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L?1 sugars, 7.60 g L?1 acetic acid, 0.33 g L?1 furfural, and 0.07 g L?1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L?1 additional sugars, 2.40 g L?1 acetic acid, zero g L?1 furfural, and zero g L?1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone‐butanol‐ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L?1 ABE of which butanol was the main product. Use of 2 g L?1 H2SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6–93.8% (w/w) sugars from 250 to 300 g L?1 SSB, respectively. LHW or dilute H2SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960–966, 2018  相似文献   

8.
Summary Sunflower seed husks were chosen as a typical lignocellulosic waste product of low value. This model substrate was hydrolyzed with sulphuric acid at 120°C. The hydrolysis was carried out in two steps: hydrolysis of the pentosan fraction and subsequent hydrolysis of the cellulose fraction. The pentosan fraction was nearly quantitatively hydrolyzed. For the cellulose hydrolysis the yield was 79% of the theoretical yield. The hydrolyzates were neutralized to pH 5 with solid calcium hydroxide and used for preparation of growth media forCandida yeasts andPaecilomyces variotii. For the pentosan hydrolyzates the yields of yeast biomass were 35–36 g per 100 g available reducing sugars (supplied to the medium). In cellulose hydrolyzates the corresponding yields were 45–48 g withCandida utilis andC. tropicalis and about 30 g withC. pseudotropicalis. P. variotii was noticeably superior to the yeasts. In pentosan hydrolyzates it produced 63 g dry mycelium from 100 g reducing sugars supplied; in cellulose hydrolyzates, 94 g. This suggests that it must be an effective utilizer of a wide range of compounds, for example, organic acids in the medium.  相似文献   

9.
The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals.  相似文献   

10.
High-performance liquid chromatography (HPLC) coupled to an evaporative light scattering detector was used to quantitatively determine glucose and cellobiose in hydrolyzates from the production of cellulose nanofillers from modified lignocellulosic materials. Prevail Carbohydrate ES 5 μ column proved more suitable for achieving the chromatographic separation of the model pulp hydrolyzate into its constituent sugars than the YMC-Pack Polyamine column. Linear calibration curves for the various sugars in the mixtures were developed. Glucose and cellobiose were clearly detectable in pulp hydrolyzates obtained from enzyme-mediated hydrolysis of recycled pulp, pine and hardwood dissolving pulps. Finally, the amount of glucose in the pulp hydrolyzates was generally higher than cellobiose.  相似文献   

11.
Rice straw was hydrolyzed into a mixture of sugars using diluted H(2)SO(4). During hydrolysis, a variety of inhibitors was also produced, including acetic acid, furfural, hydroxymethylfurfural, and lignin degradation products (several aromatic and phenolic compounds). To reduce the toxic compounds concentration in the hydrolyzate and to improve the xylitol yield and volumetric productivity, rice straw hemicellulosic hydrolyzate was treated with activated charcoal under different pH values, stirring rates, contact times, and temperatures, employing a 2(4) full-factorial design. Fermentative assays were conducted with treated hydrolyzates containing 90 g/L xylose. The results indicated that temperature, pH, and stirring rate strongly influenced the hydrolyzate treatment, temperature and pH interfering with all of the responses analyzed (removal of color and lignin degradation products, xylitol yield factor, and volumetric productivity). The combination of pH 2.0, 150 rpm, 45 degrees C, and 60 min was considered an optimal condition, providing significant removal rates of color (48.9%) and lignin degradation products (25.8%), as well as a xylitol production of 66 g/L, a volumetric productivity of 0.57 g/L.h, and a yield factor of 0.72 g/g.  相似文献   

12.
A feed control strategy, based on estimated sugar concentrations, was developed with the purpose of avoiding severe inhibition of the yeast Saccharomyces cerevisiae during fermentation of spruce hydrolyzate. The sum of the fermentable hexose sugars, glucose and mannose, was estimated from on-line measurements of carbon dioxide evolution rate and biomass concentration by use of a simple stoichiometric model. The feed rate of the hydrolyzate was controlled to maintain constant sugar concentration during fed-batch fermentation, and the effect of different set-point concentrations was investigated using both untreated and detoxified hydrolyzates. The fed-batch cultivations were evaluated with respect to cellular physiology in terms of the specific ethanol productivities, ethanol yields, and viability of the yeast. The simple stoichiometric model used resulted in a good agreement between estimated sugar concentrations and off-line determinations of sugar concentrations. Furthermore, the control strategy used made it possible to maintain a constant sugar concentration without major oscillations in the feed rate or the sugar concentration. For untreated hydrolyzates the average ethanol productivity could be increased by more than 130% compared to batch fermentation. The average ethanol productivity was increased from 0.12 to 0.28 g/g h. The productivity also increased for detoxified hydrolyzates, where an increase of 16% was found (from 0.50 to 0.58 g/g h).  相似文献   

13.
The efficiency of the enzymatic hydrolysis of wood polysaccharides ground into ultrafine particles (UFPs) has been investigated. The content of reducing sugars (RS’s) in powdered raw materials and the yield of sugars during enzymatic hydrolysis have been shown to depend on the particle size. Laser interference microscopy and dynamic light scattering studies have shown that increasing the grinding time from 20 to 40 min resulted in the formation of particles ranging from 2 to 200 nm in size. Enzymatic hydrolyzates of UFPs mostly contained glucose and galactose. The grinding intensity (mill rotation rate) and time had a significant effect on the extent of the enzymatic hydrolysis of wood.  相似文献   

14.
An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation—depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (QEtOH) but not the ethanol yields (YEtOH) in Saccharomyces cerevisiae. Within the same phenol functional group (aldehyde, ketone, and acid) the inhibition of volumetric ethanol productivity was found to depend on the amount of methoxyl substituents and hence hydrophobicity (log P). Many pentose-utilizing strains Escherichia coli, Pichia stipititis, and Zymomonas mobilis produce ethanol in concentrated hemicellulose liquors but detoxification by overliming is needed. Thermoanaerobacter mathranii A3M3 can grow on pentoses and produce ethanol in hydrolysate without any need for detoxification.  相似文献   

15.
Lignocellulose‐derived hydrolyzates typically display a high degree of variation depending on applied biomass source material as well as process conditions. Consequently, this typically results in variable composition such as different sugar concentrations as well as degree and the presence of inhibitors formed during hydrolysis. These key obstacles commonly limit its efficient use as a carbon source for biotechnological conversion. The gram‐negative soil bacterium Pseudomonas putida KT2440 is a promising candidate for a future lignocellulose‐based biotechnology process due to its robustness and versatile metabolism. Recently, P. putida KT2440_xylAB which was able to metabolize the hemicellulose (HC) sugars, xylose and arabinose, was developed and characterized. Building on this, the intent of the study was to evaluate different lignocellulose hydrolyzates as platform substrates for P. putida KT2440 as a model organism for a bio‐based economy. Firstly, hydrolyzates of different origins were evaluated as potential carbon sources by cultivation experiments and determination of cell growth and sugar consumption. Secondly, the content of major toxic substances in cellulose and HC hydrolyzates was determined and their inhibitory effect on bacterial growth was characterized. Thirdly, fed‐batch bioreactor cultivations with hydrolyzate as the carbon source were characterized and a diauxic‐like growth behavior with regard to different sugars was revealed. In this context, a feeding strategy to overcome the diauxic‐like growth behavior preventing accumulation of sugars is proposed and presented. Results obtained in this study represent a first step and proof‐of‐concept toward establishing lignocellulose hydrolyzates as platform substrates for a bio‐based economy.  相似文献   

16.
In this study on the valorization of hemicelluloses (a co-product generated during cellulosic bioethanol production), prehydrolyzates obtained from poplar woodchips pretreated in an industrial experimental steam-explosion pilot-plant facility were evaluated for the production of bioxylitol using the yeast, Candida guilliermondii FTI 20037, employing both batch and fed-batch fermentation modes in shake flasks on defined nutrient medium. The prehydrolyzates consisted of monosaccharides (pentose and hexose sugars) as well as xylo-oligosaccharides and undegraded hemicellulose. Xylose (31.6?±?0.57 g/L) was the major sugar in the prehydrolyzates that also contained acetic acid and degradation products of lignin and sugars (phenolic and furanic compounds). Xylose in the prehydrolyzates could be further increased (106.4?±?0.02 g/L) through an acid hydrolysis step (0.6 % (w/v) H2SO4). Compounds of a toxic nature in both the acid hydrolyzates and prehydrolyzates were removed by treatment with Amberlite IRA-400 resin (chloride form). Batch fermentation of pure xylose and poplar prehydrolyzate resulted in bioxylitol production of 9.9?±?0.01 and 4.9?±?0.17 g/L, respectively, indicating that the poplar prehydrolyzates exhibited an inhibitory effect on fermentation. After detoxification of the poplar prehydrolyzates, bioxylitol production increased to 8.9?±?0.01 g/L. Fed-batch fermentation of the prehydrolyzate increased the bioxylitol production to 12.39?±?0.33 g/L, while acid hydrolysis followed by detoxification resulted in a maximum bioxylitol production of 22.0?±?0.01 g/L, a 348 % increase. The results demonstrated that acid hydrolysis and detoxification followed by fed-batch fermentation was an efficient way to produce bioxylitol from poplar prehydrolyzates.  相似文献   

17.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.  相似文献   

18.
Lysis of yeast cell walls using zymolase and lysozyme was studied. During coupled zymolase–lysozyme treatment, nearly three times more reducing sugars were released from the yeast cells compared to controls. Enzyme treatment followed by extraction at pH 9 resulted in a yield of more than 80% of the total nitrogen of the yeast cell. Protein degradation occurred during enzyme treatment. The precipitation of proteins was significantly increased by succinylation after enzyme treatment. This also reduced the nucleic acid content of the yeast proteins to less than 2% and enhanced the extractability of nitrogenous material.  相似文献   

19.
Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline–enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11–20%) compared to agave bagasse (12–58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion.  相似文献   

20.
Teak wood residues were subjected to thermochemical pretreatment, enzymatic saccharification, and detoxification to obtain syrups with a high concentration of fermentable sugars for ethanol production with the ethanologenic Escherichia coli strain MS04. Teak is a hardwood, and thus a robust deconstructive pretreatment was applied followed by enzymatic saccharification. The resulting syrup contained 60 g l–1 glucose, 18 g l–1 xylose, 6 g l–1 acetate, less than 0.1 g l–1 of total furans, and 12 g l–1 of soluble phenolic compounds (SPCs). This concentration of SPC is toxic to E. coli, and thus two detoxification strategies were assayed: (1) treatment with Coriolopsis gallica laccase followed by addition of activated carbon and (2) overliming with Ca(OH)2. These reduced the phenolic compounds by 40% and 76%, respectively. The detoxified syrups were centrifuged and fermented with E. coli MS04. Cultivation with the overlimed hydrolysate showed a 60% higher volumetric productivity (0.45 gETOH l–1 hr–1). The bioethanol/sugar yield was over 90% in both strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号