首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

2.
At the blastocyst stage of pre-implantation mouse development, close contact of polar trophectoderm with the inner cell mass (ICM) promotes proliferation of undifferentiated diploid trophoblast. However, ICM/polar trophectoderm intimacy is not maintained during post-implantation development, raising the question of how growth of undifferentiated trophoblast is controlled during this time. The search for the cellular basis of trophoblast proliferation in post-implantation development was addressed with an in vitro spatial and temporal analysis of fibroblast growth factor 4-dependent trophoblast stem cell potential. Two post-implantation derivatives of the polar trophectoderm - early-streak extra-embryonic ectoderm and late-streak chorionic ectoderm - were microdissected into fractions along their proximodistal axis and thoroughly dissociated for trophoblast stem cell culture. Results indicated that cells with trophoblast stem cell potential were distributed throughout the extra-embryonic/chorionic ectoderm, an observation that is probably attributable to non-coherent growth patterns exhibited by single extra-embryonic ectoderm cells at the onset of gastrulation. Furthermore, the frequency of cells with trophoblast stem cell potential increased steadily in extra-embryonic/chorionic ectoderm until the first somite pairs formed, decreasing thereafter in a manner independent of proximity to the allantois. Coincident with occlusion of the ectoplacental cavity via union between chorionic ectoderm and the ectoplacental cone, a decline in the frequency of mitotic chorionic ectoderm cells in vivo, and of trophoblast stem cell potential in vitro, was observed. These findings suggest that the ectoplacental cavity may participate in maintaining proliferation throughout the developing chorionic ectoderm and, thus, in supporting its stem cell potential. Together with previous observations, we discuss the possibility that fluid-filled cavities may play a general role in the development of tissues that border them.  相似文献   

3.
4.
Parthenogenetic embryos of mice die shortly after implantation and characteristically contain poorly developed extraembryonic tissue. To investigate the basis of the abnormal development of parthenotes, we combined them with normal embryos to produce chimeras and examined the distribution of the parthenogenetically derived cells during preimplantation and early postimplantation development. The parthenogenetic embryos were derived from a transgenic mouse line bearing a large insert, which allowed these cells to be identified in histological sections using in situ hybridization. At the blastocyst stage, the parthenogenetic embryos contributed cells to the trophectoderm (TE) and inner cell mass (ICM) of chimeras. By 6.5 days, however, in almost every embryo, parthenogenetically derived cells were not detected in the extraembryonic trophoblast tissue descended from the TE. In contrast, parthenogenetically derived cells could contribute to all descendants of the ICM of 6.5-and 7.5-day chimeras, including the extraembryonic visceral and parietal endoderm. Quantitative analysis of the degree of chimerism in the embryonic ectoderm at 6.5-7.5 days indicated that parthenogenetically derived cells could contribute as extensively as normal cells. These results indicate that normal trophoblast development requires gene expression from the paternally inherited genome before 6.5 days of embryogenesis. Tissues of the ICM lineage, however, apparently can develop independently of the paternal genome at least to 7.5 days of embryogenesis. Comparison of these results with those of others suggests that the influence of imprinted genes is manifested at different times and in a variety of tissues during development.  相似文献   

5.
6.
本文利用胚泡注射技术研究了小鼠胚胎原始外胚层细胞(primitive ectoderm cells)的发育能力。从交配后第五天的129/SV-ter(灰色,GPI-1~a/~a)小鼠的胚胎中分离出原始外胚层细胞并将之注射到交配后第四天的C_(57)BL/6 J(黑色,GPI-1~b/~b)小鼠的胚泡腔内。经过显微操作后的胚泡被移回昆明白假孕鼠内发育,其出生率为83.3%,毛色嵌合体(chimeras)比例为100%。这些嵌合小鼠的磷酸葡萄糖异构酶(GPI-1)分析结果表明,注射的原始外胚层细胞参与了内、中、外三个胚层所衍生的组织和器官(如脑、血液、心脏、肾脏、生殖腺、肌肉、脾、旰等)的胚胎发生。嵌合体与C_(57)BL/6 J小鼠交配后所得的结果表明,原始外胚层细胞在嵌合体内能形成有功能的配子。上述结果说明,原始外胚层细胞与内细胞团(ICM)细胞、体外培养的胚胎干细胞(embryoderivedstem cells)一样,具有发育全能性。导入胚泡后,不仅能参与嵌合体中各种体细胞的分化,并且能经历配子发生产生有功能的雌雄配子。此外,本文还对胚泡注射技术进行了改进,改进后的方法不仅比已报道的各种方法简便,并且使注射嵌合体的比例提高到35.7%。  相似文献   

7.
A germ cell origin of embryonic stem cells?   总被引:11,自引:0,他引:11  
Because embryonic stem (ES) cells are generally derived by the culture of inner cell mass (ICM) cells, they are often assumed to be the equivalent of ICM cells. However, various evidence indicates that ICM cells transition to a different cell type during ES-cell derivation. Historically, ES cells have been believed to most closely resemble pluripotent primitive ectoderm cells derived directly from the ICM. However, differences between ES cells and primitive ectoderm cells have caused developmental biologists to question whether ES cells really have an in vivo equivalent, or whether their properties merely reflect their tissue culture environment. Here, we review recent evidence that the closest in vivo equivalent of an ES cell is an early germ cell.  相似文献   

8.
9.
《Epigenetics》2013,8(2):173-182
The first cell differentiation in the mammalian development separates the trophoblast and embryonic cell lineages, resulting in the formation of the trophectoderm (TE) and inner cell mass (ICM) in blastocysts. Although a lower level of global DNA methylation in the genome of the TE compared with ICM has been suggested, the dynamics of the DNA methylation profile during TE/ICM differentiation has not been elucidated. To address this issue, first we identified tissue-dependent and differentially methylated regions (T-DMRs) between trophoblast stem (TS) and embryonic stem (ES) cells. Most of these TS–ES T-DMRs were also methylated differentially between trophoblast and embryonic tissues of embryonic day (E) 6.5 mouse embryos. Furthermore, we found that the human genomic regions homologous to mouse TS–ES T-DMRs were methylated differentially between human placental tissues and ES cells. Collectively, we defined them as cell-lineage-based T-DMRs between trophoblast and embryonic cell lineages (T–E T-DMRs). Then, we examined TE and ICM cells isolated from mouse E3.5 blastocysts. Interestingly, all T-DMRs examined, including the Elf5, Pou5f1 and Nanog loci, were in the nearly unmethylated status in both TE and ICM and exhibited no differences. The present results suggest that the establishment of DNA methylation profiles specific to each cell lineage follows the first morphological specification. Together with previous reports on asymmetry of histone modifications between TE and ICM, the results of the current study imply that histone modifications function as landmarks for setting up cell-lineage-specific differential DNA methylation profiles.  相似文献   

10.
11.
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.  相似文献   

12.
Summary Mouse embryos at the blastocyst, blastocyst outgrowth, and primitive streak (day 7.5) stages of development were analysed for expression of lectin receptors using a panel of six FITC-conjugated lectins with affinities for five distinct saccharides (BSL, ConA, DBA, LTL, UEA and WGA). Blastocyst trophoblast expressed receptors for all the lectins but later tissues of the trophectoderm lineage lost receptors for distinct but overlapping subsets of the lectin panel. The inner cell mass (ICM) of the early blastocyst lacked receptors only for UEA. Differentiation of primary endoderm was accompanied by the aquisition of UEA receptors but subsequent differentiation into visceral and parietal endoderm involved the loss of receptors for both fucose binding lectins (UEA and LTL). Embryonic ectoderm in the day 7.5 egg cylinder retained receptors only for ConA and WGA. Thus, in general, differentiation during the peri- and early post-implantation period was associated with a differential loss of lectin receptors in all cell lineages of the mouse conceptus.  相似文献   

13.
Gap junctional communication in the post-implantation mouse embryo.   总被引:18,自引:0,他引:18  
C W Lo  N B Gilula 《Cell》1979,18(2):411-422
We studied the extent of cell-to-cell communication via junctional channels in in vitro-implanted mouse blastocysts by monitoring ionic coupling and the spread of two injected low molecular weight dyes, fluorescein and Lucifer yellow. In the early attached embryos, both trophoblasts and cells of the inner cell mass (ICM) were ionically coupled to one another. Dye injections in either trophoblasts or ICM cells resulted in spread to the entire embryo. As older and more developed embryos were examined, the spread of injected dye was progressively more limited. In the most developed embryos examined, dye injected into a cell in the ICM region resulted in spread throughout the ICM but not into the surrounding trophoblast cells, while dye injected into a trophoblast cell did not spread to any other cell in the embryo. Simultaneous monitoring of ionic coupling and dye injections in embryos of intermediate stages in this transition revealed that the trophoblast and ICM cells were ionically coupled, even across the apparent boundary where no dye was observed to pass. In the latest stage embryos examined in which no injected dye was observed to move out of the ICM, ionic coupling was still observed between the cells of the ICM and the trophoblasts. Furthermore, in the more developed embryos, dye injected into the ICM region frequently was not transferred to all the cells of the ICM, thus suggesting a further compartmentalization of due spread within the ICM. Our observations that ionic coupling is more extensive than the detectable spread of injected dyes may perhaps reflect a reduced number of junctional channels. With fewer channels less dye would pass between cells, so that, together with continuous quenching, the transfer of injected dye would not be detectable. This partial segregation of cell-to-cell communication as indicated by the limited dye spread may parallel specific differentiation processes, in particular that of giant trophoblast, embryonic ectoderm and extraembryonic endoderm differentiation.  相似文献   

14.
Albino mouse embryonic cells (Gpi-la/a) at 3.5–8.5 and 11.5 days were aggregated with zona cut 8–16 cell stage embryos from F1 females (Gpi-1 b/b), respectively. The aggregated embryos were transferred to pseudopregnant female mice. The recipients were allowed to go to term or were dissected at mid-gestation to assess the donor contribution in the conceptuses using glucose phosphate isomerase (GPI) analysis. The donor cells, which were previously labeled with fluorescent latex microparticles, were aggregated with embryos, and the allocation of the donor cells at the compacted morula and blastocyst stages were observed under a fluorescence microscope. When 3.5 and 45 day old inner-cell-mass (ICM) cells were used, fertile chimeric mice were obtained (50 and 19%, respectively), and when 5.5 days old primitive ectoderm cells were aggregated, they did not form chimeras but contributed to the fetuses, placenta and membrane after 13.5 days of pregnancy. However, cells from further stages never contributed to the conceptuses even though they were analyzed after 10.5 days of pregnancy. The labeled donor cells at these stages were not positively incorporated in the interior part of the compacted morula and the ICM of the blastocyst stage unlike the ICM at 3.5 days post-coitum after overnight culture.  相似文献   

15.
The spatiotemporal pattern of DNA synthesis in the mouse embryo at the beginning of metabolic dormancy was examined. Embryos were recovered from females at intervals following ovariectomy at 1100 hours on day 4 of pregnancy, incubated in vitro for 1 h in the presence of [3H]thymidine, and prepared for light microscopic autoradiography. The proportion of labeled cells in the embryo remained high (40-60%) for 18 h after ovariectomy and then declined gradually to 12% by 96 h. However, analysis of individual cell subpopulations showed that the decline was not uniform in all regions of the blastocyst. Labeling was high over the inner cell mass (ICM) during all time intervals in the study, while labeling over the mural trophoblast cells declined sharply by 24 h after ovariectomy. Labeling over the polar trophoblast also declined but had values that were intermediate between the ICM and mural trophoblast regions of the blastocyst. These regional differences in DNA synthesis during the arrest of development suggest that intermediate steps are involved in control of DNA synthesis in the embryo and that the ICM may play a role in the different responses of the trophoblast cell populations.  相似文献   

16.
We have examined the tissue and embryonic distribution of an antigen on a large polysaccharide that is recognized by a monoclonal antibody, IIC3, prepared against F9 teratocarcinoma cells. By immunofluorescence the antigen is first detected on compacted morulae and early blastocysts. It is strongly expressed on the primary endoderm and trophoblast of expanded blastocysts, but then disappears from the trophoblast of attached blastocysts in vitro. The binding of the antibody is completely inhibited by D-galactose and N-acetylgalactosamine. Fluoresceinated lectins were used to study further the changes in cell surface carbohydrates on trophoblast during implantation. Ricinus I, specific for terminal galactose, binds to preimplantation stages but does not bind to the trophoblast of the attached blastocyst. On the other hand, wheat germ agglutinin, specific for N-acetylglucosamine and sialic acid, binds to all preimplantation embryos and also to attached blastocysts (embryo proper and trophoblast). Neuraminidase treatment of blastocyst outgrowths enhances binding of both IIC3 and Ricinus I to the trophoblast; conversely, the binding of wheat germ agglutinin is decreased by this treatment. The results obtained in this study show changes of cell surface carbohydrates during early mouse development and suggest that sialic acid may be masking molecules on the surface of the trophoblast at the time of implantation.  相似文献   

17.
18.
胚胎干细胞起源的探讨   总被引:1,自引:0,他引:1  
杨炜峰  华进联  于海生  窦忠英 《遗传》2006,28(8):1037-1042
目前胚胎干细胞(ESCs)建系的取材来源包括桑椹胚的卵裂球、囊胚的内细胞团(ICM)、上胚层细胞和原始生殖细胞(PGCs),甚至从新生鼠睾丸细胞也分离得到类ES样细胞系。这就提出了一个问题,什么是ESCs最接近的体内细胞来源。传统观念常常把ESCs等同于ICM细胞,也有学者认为ESCs更象上胚层细胞,而在已知的分子标记基因方面,ESCs所具有的特征更接近体内早期生殖细胞。不清楚ESCs最接近的体内细胞来源,可能是制约许多品系小鼠和大多哺乳类动物建系成功率提高的原因之一。ESCs系与EG细胞系的分离条件不同表明,加强对ESCs多能性维持基因调控研究具有重要意义。本文从ESCs的经典概念及其发展,早期胚胎细胞和生殖细胞发育规律,早期胚胎细胞、早期生殖细胞和ESCs的关系等方面进行综合分析,认为ESCs可能有多种接近的体内细胞来源。进一步应通过对ESCs建系不同的取材细胞和不同品系的ESCs间进行比较研究,以便弄清ESCs的来源和转化机制,为提高不同物种ESCs建系效率提供理论支持。  相似文献   

19.
Syndecan is an integral membrane proteoglycan that binds cells to several interstitial extracellular matrix components and binds to basic fibroblast-growth factor (bFGF) thus promoting bFGF association with its high-affinity receptor. We find that syndecan expression undergoes striking spatial and temporal changes during the period from the early cleavage through the late gastrula stages in the mouse embryo. Syndecan is detected initially at the 4-cell stage. Between the 4-cell and late morula stages, syndecan is present intracellularly and on the external surfaces of the blastomeres but is absent from regions of cell-cell contact. At the blastocyst stage, syndecan is first detected at cell-cell boundaries throughout the embryo and then, at the time of endoderm segregation, becomes restricted to the first site of matrix accumulation within the embryo, the interface between the primitive ectoderm and primitive endoderm. During gastrulation, syndecan is distributed uniformly on the basolateral cell surfaces of the embryonic ectoderm and definitive embryonic endoderm, but is expressed with an anteroposterior asymmetry on the surface of embryonic mesoderm cells, suggesting that it contributes to the process of mesoderm specification. In the extraembryonic region, syndecan is not detectable on most cells of the central core of the ectoplacental cone, but is strongly expressed by cells undergoing trophoblast giant cell differentiation and remains prominent on differentiated giant cells, suggesting a role in placental development. Immunoprecipitation studies indicate that the size of the syndecan core protein, although larger than that found in adult tissues (75 versus 69 x 10(3) Mr), does not change during peri-implantation development. The size distribution of the intact proteoglycan does change, however, indicating developmental alterations in its glycosaminoglycan composition. These results indicate potential roles for syndecan in epithelial organization of the embryonic ectoderm, in differential axial patterning of the embryonic mesoderm and in trophoblast giant cell function.  相似文献   

20.
Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2 ttp://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号