首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major heat shock protein Hsp72 prevents heat-induced apoptosis. We have previously demonstrated that transiently expressed Hsp72 exerts its anti-apoptotic effect by suppressing the activity of stress-kinase JNK, an early component of the apoptotic pathway initiated by heat shock. On the other hand, constitutive expression of Hsp72 does not lead to suppression of heat-induced JNK activation, yet still efficiently prevents apoptosis. To address this apparent contradiction, we studied the effects of constitutively expressed Hsp72 on activation of JNK and apoptosis in Rat-1 fibroblasts. We found that the level of heat-induced apoptosis directly correlated with the duration rather than the magnitude of JNK activity following heat shock. Constitutively expressed Hsp72 strongly reduced the duration of JNK while it did not suppress initial JNK activation. These effects were due to Hsp72-mediated acceleration of JNK dephosphorylation. Addition of vanadate to inhibit JNK phosphatase activity completely prevented the anti-apoptotic action of Hsp72. Therefore, suppression of heat-induced apoptosis by Hsp72 could be fully accounted for by its effects on JNK activity.  相似文献   

2.
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45 degrees C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45 degrees C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.  相似文献   

3.
The major inducible heat shock protein Hsp72 has been shown to protect cells from certain apoptotic stimuli. Here we investigated the mechanism of Hsp72-mediated protection from tumor necrosis factor (TNF)-induced apoptosis of primary culture of IMR90 human fibroblasts. Hsp72 temporarily blocked apoptosis in response to TNF and permanently protected cells from heat shock. An Hsp72 mutant (Hsp72 Delta EEVD) with a deletion of the four C-terminal amino acids, which are essential for the chaperone function, blocked TNF-induced apoptosis in a manner similar to that of normal Hsp72 but did not inhibit heat shock-induced death. Therefore, the chaperone activity of Hsp72 is dispensable for suppression of TNF-induced apoptosis but is required for protection from heat shock. In fibroblasts derived from Bid knockout mice, similar temporal inhibition of TNF-induced apoptosis was seen. In these cells neither normal Hsp72 nor Hsp72 Delta EEVD conferred additional protection from apoptosis, suggesting that Hsp72 specifically affects Bid-dependent but not Bid-independent apoptotic pathways. Furthermore, both normal Hsp72 and Delta Hsp72EEVD inhibited Bid activation and downstream events, including release of cytochrome c, activation of caspase 3, and cleavage of poly-ADP-ribose polymerase. Both Hsp72 and Delta Hsp72EEVD blocked activation of the stress kinase c-jun N-terminal kinase (JNK) by TNF, and specific inhibition of JNK similarly temporarily blocked Bid activation and the downstream apoptotic events. These data strongly suggest that in TNF-induced apoptosis, Hsp72 specifically interferes with the Bid-dependent apoptotic pathway via inhibition of JNK.  相似文献   

4.
Various stresses activate the c-Jun N-terminal kinase (JNK), which is involved in the regulation of many aspects of cellular physiology, including apoptosis. Here we demonstrate that in contrast to UV irradiation, heat shock causes little or no stimulation of the JNK-activating kinase SEK1, while knocking out the SEK1 gene completely blocks heat-induced JNK activation. Therefore, we tested whether heat shock activates JNK via inhibition of JNK dephosphorylation. The rate of JNK dephosphorylation in unstimulated cells was high, and exposure to UV irradiation, osmotic shock, interleukin-1, or anisomycin did not affect this process. Conversely, exposure of cells to heat shock and other protein-damaging conditions, including ethanol, arsenite, and oxidative stress, strongly reduced the rate of JNK dephosphorylation. Under these conditions, we did not observe any effects on dephosphorylation of the homologous p38 kinase, suggesting that suppression of dephosphorylation is specific to JNK. Together, these data indicate that activation of JNK by protein-damaging treatments is mediated primarily by inhibition of a JNK phosphatase(s). Elevation of cellular levels of the major heat shock protein Hsp72 inhibited a repression of JNK dephosphorylation by these stressful treatments, which explains recent reports of the suppression of JNK activation by Hsp72.  相似文献   

5.
Volloch V  Gabai VL  Rits S  Sherman MY 《FEBS letters》1999,461(1-2):73-76
A major inducible heat shock protein, Hsp72, has previously been found to stimulate dephosphorylation (inactivation) of stress kinase JNK in heat-shocked cells and protect them from apoptosis. Using Rat-1 fibroblasts with constitutive expression of a human Hsp72 or its deletion mutant lacking an ATPase domain (C-terminal fragment (CTF)), we tested whether ATPase activity of Hsp72 is necessary for these effects. We found that expression of CTF markedly increased, similarly to the intact protein, JNK dephosphorylation in heat-shocked cells. As a result, JNK inactivation following heat shock occurred much faster in cells expressing either full-length or mutant Hsp72 than in parental cells and this was accompanied by suppression of heat-induced apoptosis. Thus, protein refolding activity of Hsp72 appears to be dispensable for its effect on JNK inactivation and apoptosis.  相似文献   

6.
Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase   总被引:37,自引:0,他引:37  
Park HS  Lee JS  Huh SH  Seo JS  Choi EJ 《The EMBO journal》2001,20(3):446-456
Hsp72, a major inducible member of the heat shock protein family, can protect cells against many cellular stresses including heat shock. In our present study, we observed that pretreatment of NIH 3T3 cells with mild heat shock (43 degrees C for 20 min) suppressed UV-stimulated c-Jun N-terminal kinase 1 (JNK1) activity. Constitutively overexpressed Hsp72 also inhibited JNK1 activation in NIH 3T3 cells, whereas it did not affect either SEK1 or MEKK1 activity. Both in vitro binding and kinase studies indicated that Hsp72 bound to JNK1 and that the peptide binding domain of Hsp72 was important to the binding and inhibition of JNK1. In vivo binding between endogenous Hsp72 and JNK1 in NIH 3T3 cells was confirmed by co-immunoprecipitation. Hsp72 also inhibited JNK-dependent apoptosis. Hsp72 antisense oligonucleotides blocked Hsp72 production in NIH 3T3 cells in response to mild heat shock and concomitantly abolished the suppressive effect of mild heat shock on UV-induced JNK activation and apoptosis. Collectively, our data suggest strongly that Hsp72 can modulate stress-activated signaling by directly inhibiting JNK.  相似文献   

7.
Enhanced cell survival and resistance to apoptosis during thermotolerance correlates with an increased expression of heat shock proteins (Hsps). Here we present additional evidence in support of the hypothesis that the induction of Hsp27 and Hsp72 during acquired thermotolerance in Jurkat T-lymphocytes prevents apoptosis. In thermotolerant cells, Hsp27 was shown to associate with the mitochondrial fraction, and inhibition of Hsp27 induction during thermotolerance in cells transfected with hsp27 antisense potentiated mitochondrial cytochrome c release after exposure to various apoptotic stimuli, despite the presence of elevated levels of Hsp72. Caspase activation and apoptosis were inhibited under these conditions. In vitro studies revealed that recombinant Hsp72 more efficiently blocked cytochrome c-mediated caspase activation than did recombinant Hsp27. A model is presented for the inhibition of apoptosis during thermotolerance in which Hsp27 preferentially blocks mitochondrial cytochrome c release, whereas Hsp72 interferes with apoptosomal caspase activation.  相似文献   

8.
Activation of the c-Jun N-terminal kinase (JNK) by a variety of stimuli is critical for regulation of many cellular processes including apoptosis. The major inducible heat shock protein Hsp72 has previously been demonstrated to inhibit activation of JNK in cells exposed to heat shock and other protein-damaging agents, thus suppressing apoptosis. Hsp72 can protect proteins from stress-induced damage. To test if this protective function of Hsp72 is involved in JNK suppression, we investigated whether Hsp72 can avert activation of JNK by stimuli that do not cause protein damage. We show that Hsp72 suppresses activation of JNK induced by non-protein-damaging stimuli, interleukin-1 and UV irradiation, as well as by constitutively active components of the JNK signaling cascade Cdc42 and MEKK1. Furthermore, Hsp72 strongly reduced activation of JNK by phosphatase inhibitors. We also demonstrate that an Hsp72 mutant that lacks the ATPase domain is still capable of JNK suppression, thus indicating that the protein refolding activity of Hsp72 is not critical for inhibition of JNK activation. Taken together these data suggest that Hsp72 plays a regulatory role in JNK signaling and that the function of Hsp72 in protein protection or refolding is not involved in JNK regulation.  相似文献   

9.
Li H  Liu L  Xing D  Chen WR 《FEBS letters》2010,584(22):4672-4678
Here we studied the mechanism by which heat shock protein 70 (Hsp70) prevents Bax activation during ultraviolet (UV)-induced apoptosis. UV treatment led to c-Jun N-terminal kinase (JNK) phosphorylation, Bim redistribution and subsequent Bax activation. Bim depletion caused a smaller reduction in apoptosis than that by JNK inhibition, indicating that Bim activation is not entirely responsible for induction of apoptosis and other mechanisms are involved. Hsp70 knockdown resulted in high levels of activated JNK and Bax, while Hsp70 overexpression inhibited these processes. These findings demonstrate that Hsp70 prevented Bax activation via inhibiting the JNK/Bim pathway. Simultaneously, increased binding of Hsp70 to Bax was observed. Collectively, our results for the first time demonstrate that Hsp70 prevents Bax activation both by inhibiting the JNK/Bim pathway and by interacting with Bax in UV-induced apoptosis.  相似文献   

10.
Subjecting myogenic H9c2 cells to transient energy deprivation leads to a caspase-independent death with typical features of necrosis. Here we show that the rupture of cytoplasmic membrane, the terminal event in necrosis, is shortly preceded by rapid depolarization of mitochondrial membranes. The rapid deenergization of mitochondria critically depended upon prior generation of reactive oxygen species (ROS) during ATP depletion stage. Accordingly, expression of catalase prevented mitochondrial depolarization and averted subsequent necrosis. Interestingly, trifluoperazine, a compound that protects cells from ischemic insults, prevented necrosis of H9c2 cells through inhibition of ROS production. Other factors that regulated the mitochondrial membrane depolarization and subsequent loss of plasma membrane integrity include a stress kinase JNK activated at early steps of recovery from ATP depletion, as well as an apoptotic inhibitory protein ARC. Accordingly, inhibition of JNK or overexpression of ARC prevented mitochondrial depolarization and rescued H9c2 cells from necrosis. ROS and JNK affected mitochondrial deenergization and necrosis independently of each other since inhibition of ROS production did not prevent activation of JNK, whereas inhibition of JNK did not suppress ROS accumulation. Therefore, JNK activation and ROS production represent two independent pathways that control mitochondrial depolarization and subsequent necrosis of cells subjected to transient energy deprivation. Overexpression of ARC, although preventing mitochondrial depolarization, did not affect either JNK activation or production of ROS. The major heat shock protein Hsp72 inhibited JNK-related steps of necrotic pathway but did not affect ROS accumulation. Interestingly, mitochondrial depolarization and subsequent necrosis can be suppressed by an Hsp72 mutant Hsp72DeltaEEVD, which lacks chaperone function but can efficiently suppress JNK activation. Thus, Hsp72 is directly implicated in a signaling pathway, which leads to necrotic death.  相似文献   

11.
Since protection of cells from stress-induced apoptosis by the heat shock protein Hsp72 involves suppression of stress kinase JNK, we suggested that Hsp72-mediated JNK inhibition might also be critical for myocardial protection from ischemia/reperfusion. Transient energy deprivation of H9c2 myogenic cells, used as an in vitro model of myocardial ischemia, led to cell death that had morphological features of apoptosis and necrosis and was independent of caspases. Surprisingly, this unusual type of cell death was regulated by JNK and ERK kinases. In fact, specific inhibition of JNK increased cell survival; specific inhibition of ERKs enhanced deleterious consequences of energy deprivation, whereas inhibition of p38 kinase had no effect. Hsp72 suppressed activation of JNK and did not increase ERK activity, suggesting that inhibition of JNK is the important component of Hsp72-mediated protection. Upon transient energy deprivation, activation of JNK proceeds via two distinct pathways, stimulation of JNK phosphorylation by a protein kinase SEK1 and inhibition of JNK dephosphorylation. Remarkably, in cells exposed to transient energy deprivation, Hsp72 enhanced the rate of JNK dephosphorylation but did not affect SEK1 activity. Therefore, it appears that Hsp72 specifically down-regulates JNK by accelerating its dephosphorylation, which reduces the susceptibility of cardiac cells to simulated ischemia/reperfusion.  相似文献   

12.
BACKGROUND: Elevated temperatures jeopardize plant disease resistance, as mediated by salicylic acid (SA). SA potentiates heat-induced expression of the 70-kDa heat shock protein (Hsp70) in tomato cells. In mammalian cells, Hsp70 suppresses apoptosis. We hypothesized that potentiation of heat-induced Hsp70 by SA contributes to a reduction in apoptosis in tobacco protoplasts. METHODS: Tobacco protoplasts (Nicotiana tabacum) were exposed to SA (70 microM) at normal temperatures or in combination with heat shock. Hsp70/Hsc70 accumulation and phosphatidylserine (PS) exposure, DNA fragmentation, as well as loss of mitochondrial membrane potential were quantified by flow cytometry. RESULTS AND CONCLUSIONS: SA at normal temperatures did not influence Hsp70/Hsc70 accumulation, but were found to induce apoptosis. In contrast, SA in combination with HS potentiated heat-induced Hsp70/Hsc70 accumulation in tobacco protoplasts that correlated negatively with apoptosis, illustrated by decreased PS exposure and DNA fragmentation and enhanced mitochondrial membrane potential. We propose that this correlation supports a possible role for apoptosis suppression by Hsp70 under elevated temperatures during pathogen infection.  相似文献   

13.
Experiments with cultured cells showed that most cellular stress resistance components are specialized for certain types of damage. For example, superoxide dismutase protects from oxidative damage; DNA repair enzymes guard against mutagens and other DNA-damaging agents. On the other hand, the major inducible heat shock protein Hsp72 protects cells from a large variety of stresses and thus represents a generalized repair/stress resistance component. Hsp72 not only refolds damaged proteins but also interferes with programmed cell death signaling pathways, thus providing cells with time to repair the damage, hence its universality as a stress protector. In the present study we demonstrate the occurrence in murine and human ascites fluids (AF) of a natural nontoxic extracellular factor (ascites Hsp72-inducing factor, AHIF) capable of activating Hsp72 expression in different types of cells via a pathway distinct from the heat shock response pathway. AHIF is unique in that it is the first physiological factor capable of inducing synthesis of Hsp72 not only in young cells but, remarkably, also in aged human cells that largely have lost the ability to express Hsp72 in response to stresses, a manifestation at the cellular level of a progressive impairment in the ability to adapt to environmental changes which characterizes aging. Pretreatment of aged human cells with AF triggers Hsp72 expression at levels seen in young stressed cells and protects cells from a variety of otherwise lethal stressful treatments such as heat shock, TNF, UV irradiation, etoposide, and menadione. Activation of Hsp72 expression is essential for antiapoptotic action of AHIF because specific inhibition of Hsp72 expression by antisense RNA abolishes the cytoprotective effect of AF. In view of an important link between stress resistance and longevity in different organisms, the abilities of AHIF make it a unique candidate for the role of a systemic regulator of the aging process. While a cell-autonomous stress response diminishes with aging, aged cells retain the ability to respond to an extracellular factor which induces the expression of Hsp72. This finding opens up exciting possibilities for using AF factor to restore stress resistance to old cells and organisms and the possibility of interfering with the aging process. The ability to induce stress resistance in young cells and to restore it in aged cells could serve as a basis for developing effective antiapoptotic therapies.  相似文献   

14.
15.
Inhibition of stress-induced apoptosis by the molecular chaperone protein Hsp70 is a contributing factor in tumorigenesis and suppression of this ability could increase the effectiveness of anti-tumor therapy. Tumor cells exist in an acidic environment and acute acidification can sensitize tumor cells to heat-induced cell death. However, the ability of Hsp70 to prevent apoptosis under these conditions has not been examined. The effect of acute acidification on heat-induced apoptosis was examined in a human T-cell line with tetracycline-regulated Hsp70 expression. Apoptosis was inhibited in cells exposed to hyperthermia in acidic media when examined 6 h after the heat stress, but resumed if cells were returned to physiological pH during this recovery period. Long-term proliferation assays showed that acute acidification sensitized cells to heat-induced apoptosis. Hsp70 expressing cells were also sensitized and this was correlated with a reduced ability to suppress the activation of JNK (c-jun N-terminal kinase), Bax and caspase-3. Further sensitization could be achieved with the NHE1 (Na+/H+ exchanger) inhibitor HMA (5-(N, N-hexamethylene) amiloride), which potentiated JNK activation in heat-shocked cells. These results demonstrate that the ability of Hsp70 to suppress apoptosis is compromised when cells are exposed to hyperthermia in an acidic environment, which is correlated with an impaired ability to inhibit JNK activation.  相似文献   

16.
Kim YH  Park EJ  Han ST  Park JW  Kwon TK 《Life sciences》2005,77(22):2783-2793
In the present study, we determined the molecular pathways that induce the heat shock proteins (Hsps) after treatment of cells with arsenic trioxide. Administration of arsenic trioxide to MDA231 cells leads to induce Hsp70, which is accompanied by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). We showed that arsenic trioxide-induced Hsp70 expression was caused by activation of ROS and prevented by the antioxidant N-Acetyl-Cysteine (NAC). SP600125 and dominant-negative SEK suppressed Hsp70 promoter-driven reporter gene expression, suggesting that JNK would be preferentially associated with the protective heat shock response against arsenic trioxide stress. In addition, SP600125, a specific JNK inhibitor, significantly reduced the amount of phosphorylated HSF1 upon administration of arsenic trioxide. It is likely that Hsp70 expression against arsenic trioxide exposure protects cells from oxidative injury and apoptotic cell death by means of JNK activity.  相似文献   

17.
Kumar Y  Tatu U 《Proteomics》2003,3(4):513-526
Multiple stress proteins are recruited in response to stress in living cells. There are limited reports in the literature analyzing multiple stress protein shifts and their functional consequences on stress response. Using two-dimensional electrophoresis we have analyzed shifts in stress protein profiles in response to energy deprivation as a model of ischemic injury to kidneys. A group of chaperones and stress-induced mitogen activated protein (MAP) kinases were analyzed. In addition to examining stress protein induction and phosphorylation we have also examined the mechanism of cytoprotection by heat shock protein 70 (Hsp70). Our results show that, of the different stress proteins examined, only binding protein (BiP) and Hsp70 were significantly induced upon energy deprivation. Other stress proteins, including Hsp27, calnexin, Hsp90 and ERp57 showed alterations in their phosphorylation profiles. Three different MAP kinases, namely p38, extracellular signal regulated kisase and c-jun N-terminal kinase (JNK) were activated in response to energy deprivation. While JNK activation was linked to apoptosis, activated-p38 was involved in phosphorylation of Hsp27. Study of inhibitors of Hsp70 induction or pre-induction of Hsp70 indicated that induced Hsp70 was involved in the suppression of JNK activation thereby inhibiting apoptotic cell death. Our results provide important insights into the flux in stress protein profiles in response to simulated ischemia and highlight the antiapoptotic, cytoprotective mechanism of Hsp70 action.  相似文献   

18.
19.
The stress‐activated protein kinase/c‐Jun N‐terminal kinase (SAPK/JNK) pathway is a well‐known senescence‐related stress activated protein kinase. Multiple environmental stresses induce programmed cell death, such as apoptosis. Normal human diploid fibroblast (HDF) cells have a limited life span in vitro, halting proliferation after a fixed number of cell divisions. Aged passage HDF showed resistance to oxidative stress involving heat shock proteins (Hsp60) through a mechanism involving the translocation of Hsp60 from the mitochondria to the cytosol. The present study showed that the translocation of Hsp60 from the mitochondria to the cytosol followed by high levels of p‐SAPK/JNK activation as a result of oxidative stress was observed in the young cells only. The inhibition of SAPK/JNK activation by SP600125 under oxidative stress almost completely blocked the translocation of Hsp60 in both young and aged cells. This suggests that aged HDF cells are resistant to oxidative stress by blocking the translocation of Hsp60 from the mitochondria to the cytosol followed by SAPK/JNK inhibition. Overall, the mechanism of resistance by oxidative stress in aged cells is induced by blocked of the translocation of Hsp60 followed by SAPK/JNK inactivation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Hsp70 overexpression can protect cells from stress-induced apoptosis. Our previous observation that Hsp70 inhibits cytochrome c release in heat-stressed cells led us to examine events occurring upstream of mitochondrial disruption. In this study we examined the effects of heat shock on the proapoptotic Bcl-2 family member Bax because of its central role in regulating cytochrome c release in stressed cells. We found that heat shock caused a conformational change in Bax that leads to its translocation to mitochondria, stable membrane association, and oligomerization. All of these events were inhibited in cells that had elevated levels of Hsp70. Hsp70 did not physically interact with Bax in control or heat-shocked cells, indicating that Hsp70 acts to suppress signals leading to Bax activation. Hsp70 inhibited stress-induced JNK activation and inhibition of JNK with SP600125 or by expression of a dominant negative mutant of JNK-blocked Bax translocation as effectively as Hsp70 overexpression. Hsp70 did not protect cells expressing a mutant form of Bax that has constitutive membrane insertion capability or cells treated with a small molecule activator of apoptosome formation, indicating that it is unable to prevent cell death after mitochondrial disruption and caspase activation have occurred. These results indicate that Hsp70 blocks heat-induced apoptosis primarily by inhibiting Bax activation and thereby preventing the release of proapoptotic factors from mitochondria. Hsp70, therefore, inhibits events leading up to mitochondrial membrane permeabilization in heat-stressed cells and thereby controls the decision to die but does not interfere with cell death after this event has occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号