首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hind leg muscles of female rats (85-99 g) were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D-[U-14C]glucose, release of lactate and pyruvate, incorporation of D-[U-14C]glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-[1,2-3H]glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased by 50% the concentration of insulin receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.  相似文献   

2.
3.
4.
5.
6.
7.
The optimum warming rate for cryopreserved skin (dimensions: 7.6 cm X 20 cm X 0.38 mm thick) folded double in a flat package format was tested using a recently developed quantitative assay of skin cell metabolism. The assay measured the metabolic conversion of glucose to carbon dioxide by intact partial-thickness skin. Skin cooled at a constant, controlled rate of -1 degree C min-1 to a temperature of -100 degrees C, and then rapidly transferred to -196 degrees C for overnight storage, could be optimally warmed at rates of 95-260 degrees C min-1 by immersion in 10-20 degrees C water. The amount of metabolic activity remaining in skin warmed at rates within this optimal range was 76-78% of normal. Slightly less than maximal metabolic activity, 71-75% of normal, resulted from warming rates of 292-458 degrees C min-1, obtained by immersion in 25-37 degrees C water. Skin metabolism remaining after warming rates of 30-53 degrees C min-1 (3-5 degrees C water) was 52-70% of normal, while that remaining after rates of 501-882 degrees C (40-65 degrees C water) was 0-47% of normal. These experiments establish practical upper and lower limits for post-cryopreservation warming rates employed to maintain skin cell metabolism, and the cellular viability which depends upon that metabolism.  相似文献   

8.
9.
10.
11.
After 28 days of hindlimb-suspension, insulin binding, 2-deoxy-D-glucose (2-DG) uptake, and glucose metabolism (glycolysis and glycogenesis) were determined at various insulin concentrations (0.2-30 nM) in soleus muscle of young (18-day-old) and adult (150-day-old) rats. Compared with age-matched controls the young (YS) and adult suspended (AS) rats had lower soleus and body weights and insulin levels (P less than 0.05). Per milligram of protein, insulin binding, 2-DG uptake, and the rate of glycolysis were increased by approximately 200%, and the rate of glycogenesis was increased approximately 100% in the YS group (P less than 0.05). Except for a reduction in glycogenesis (P less than 0.05) all other parameters also increased in the AS rats (P less than 0.05). On the basis of the whole muscle the rate of glucose metabolism (glycogenesis + glycolysis) was reduced in the YS rats (P less than 0.05), but in the AS rats glucose metabolism was similar to the controls. Thus the increased glucose metabolism (i.e., per milligram of protein) in the YS and AS groups may represent a compensatory response by atrophied muscle to attempt to sustain glucose removal from the circulation. Because greater insulin binding occurred in YS muscle [35% slow-twitch (ST)] than in the control group (70% ST), and greater insulin binding occurred in the AS (81% ST) than in the control group (90% ST), higher insulin binding capacities are not always related to a high proportion of ST muscle fibers. In conclusion, after hindlimb suspension, marked increments in insulin binding and glucose metabolism occur in the soleus muscle.  相似文献   

12.
13.
14.
Intravenous glucose tolerance (IVGTT), basal insulin and insulin response to glucose infusion (GIT), insulin sensitivity, and lipoprotein patterns were determined in non-obese post-coronary subjects, 3-6 months after myocardial infarction. Twelve had decreased and 31 normal IVGTT. The control group comprised 31 subjects with normal IVGTT, who did not display any signs of coronary disease. The post-coronary patients were not taking any drugs except for furosamide, which was shown not to influence insulin response to GIT or glucose tolerance. Decreased IVGTT in the post-coronary patients could be ascribed to decreased insulin response and insulin resistance. These two derangements are considered as hereditary markers in glucose intolerance and type 2 diabetes. Accordingly, our findings suggest that glucose intolerance in subjects with myocardial infarcts has the same background. The post-coronary patients demonstrated elevated triglycerides (TG) and cholesterol in total serum and in very low density lipoproteins (VLDL), the lipoprotein patterns being almost identical in post-coronary patients with or without decreased IVGTT. No relationship was found in the control and post-coronary groups between IVGTT, basal insulin, stimulated insulin (KI, IP), and insulin sensitivity (KG), on the one hand, and total or VLDL TG or any other lipoprotein particle, on the other. Thus, the derangements in glucose, insulin, and serum triglyceride metabolism were independent abnormalities (risk factors) in these non-obese post-coronary patients.  相似文献   

15.
The purpose of the present experiments was to examine in sheep whether the fetal insulin response to glucose was present by day 110 (d110) of pregnancy and whether the magnitude of the fetal insulin response changed between d110 and d145 (term). We also compared the responses observed in fetuses to those of adult nonpregnant sheep. Basal concentrations of glucose measured in plasma collected from the fetal femoral artery rose progressively between d110 and d145 of gestation, but did not attain the plasma glucose concentrations measured in adult sheep. Peak glucose concentrations in fetuses were achieved 10 min following the bolus injection of glucose (0.8 g/kg estimated fetal body weight) into the fetal femoral vein, and peak values increased with gestational age. Significantly higher peak glucose concentrations were achieved in adult sheep. The concentration of insulin rose rapidly in fetuses at d110, and a similar time course of insulin release in plasma was seen at all gestational ages. The peak plasma insulin concentrations were achieved at 20 min and were significantly greater in older (d140-145) than younger (d125-130) fetuses (p less than 0.05). Peak insulin values in fetuses were much less than in adult sheep. In adult sheep glucose and insulin concentrations remained elevated at 120 min following the injection of glucose, whereas in the fetus the concentration of insulin had returned to preinjection values by 60 min. The insulin/glucose ratio did not change in fetal lambs over the last one third of gestation and was not different from the adult sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Glucokinase (GK) activity is essential for the physiological regulation of insulin secretion by glucose. Because the enzyme exerts nearly total control over glucose metabolism in the beta-cell, even small changes in GK activity exert effects on glucose-stimulated insulin secretion and, consequently, the blood glucose concentration. Using quantitative imaging of multicolor fluorescent proteins fused to GK, we found that the association of GK with insulin granules is regulated by glucose in the beta-cell. Glucose stimulation increased the rate of fluorescence recovery after photobleaching of GK to insulin granules, indicating that GK is released into the cytoplasm after glucose stimulation. Changes in fluorescence resonance energy transfer between two different fluorescent protein variants inserted on opposing ends of GK were observed after glucose stimulation and correlated with increased enzyme activity. Furthermore, glucose-stimulated changes in GK regulation were blocked by two inhibitors of insulin secretion. Insulin treatment restored GK regulation in inhibited cells and stimulated GK translocation and activation by itself. Together, these data support a model for post-translational regulation of GK whereby insulin regulates both the association of GK with secretory granules and the activity of the enzyme within the pancreatic beta-cell.  相似文献   

18.
19.
The hepatoportal region is important for glucose sensing; however, the relationship between the hepatoportal glucose-sensing system and the postprandial rapid phase of the insulin response has been unclear. We examined whether a rapid-phase insulin response to low amounts of intraportal glucose infusion would occur, compared that with the response to intrajugular glucose infusion in conscious rats, and assessed whether this sensing system was associated with autonomic nerve activity. The increases in plasma glucose concentration did not differ between the two infusions at 3 min, but the rapid-phase insulin response was detected only in the intraportal infusion. A sharp and rapid insulin response was observed at 3 min after intraportal infusion of a small amount of glucose but not after intrajugular infusion. Furthermore, this insulin response was also induced by intraportal fructose infusion but not by nonmetabolizable sugars. The rapid-phase insulin response at 3 min during intraportal infusion did not differ between rats that had undergone hepatic vagotomy or chemical sympathectomy with 6-hydroxydopamine compared with control rats, but this response disappeared in rats that had undergone chemical vagotomy with atropine. We conclude that the elevation of glucose concentration in the hepatoportal region induced afferent signals from undetectable sensors and that these signals stimulate pancreas to induce the rapid-phase insulin response via cholinergic nerve action.  相似文献   

20.
The effects of exercise training on glucose-stimulated insulin secretion (GSIS) were studied in male Sprague-Dawley rats made mildly to severely diabetic by partial pancreatectomy. Exercise trained (10 wk treadmill; T) and untrained (Unt) rats were grouped according to posttraining fed-state hyperglycemia as follows: T less than 200 and Unt less than 200 (glucose concn less than 200 mg/dl), T 200-300 and Unt 200-300 (glucose concn 200-300 mg/dl), and T greater than 300 and Unt greater than 300 (glucose concn greater than 300 mg/dl). After exercise training, hyperglycemic glucose clamps were performed in awake rats by elevation of arterial blood glucose concentration 126 mg/dl above fasting basal levels for 90 min. Exercise training significantly increased muscle citrate synthase activity. Prevailing hyperglycemia was reduced during the 10-wk exercise training period in all T rats with fed-state glucose concentrations less than 300, and only 53% of Unt rats in these groups had reduced glycemia. GSIS was significantly higher in T less than 200 [2.4 +/- 0.7 (SD) ng/ml at 90 min] than in Unt less than 200 (1.5 +/- 0.3). A similar response was found for T 200-300 (1.1 +/- 0.3 ng/dl) vs. Unt 200-300 (0.7 +/- 0.1) but not T greater than 300 (0.36 +/- 0.2) vs Unt greater than 300 (0.44 +/- 0.05). Sham-operated control rats had insulin concentrations of 6.6 +/- 1.6 ng/ml at the 90th min of the clamp. Acute exercise reduced fed-state glycemia in rats with mild-to-moderate (less than 300 mg/dl) diabetes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号