首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The reaction of the functional tyrosyl radical in protein R2 of ribonucleotide reductase from E. coli and mouse with the enzyme inhibitor hydroxyurea has been studied by EPR stopped-flow techniques at room temperature. The rate of disappearance of the tyrosyl radical in E. coli protein R2 is k2 = 0.43 M-1 s-1 at 25 degrees C. The reaction follows pseudo-first-order kinetics up to 450 mM hydroxyurea indicating that no saturation by hydroxyurea takes place even at this high concentration. Transient nitroxide-like radicals from hydroxyurea have been detected for the first time in the reaction of hydroxyurea with protein R2 from E. coli and mouse, indicating that 1-electron transfer from hydroxyurea to the tyrosyl radical is the dominating mechanism in the inhibitor reaction. The hydroxyurea radicals appear in low steady-state concentrations during 2-3 half-decay times of the tyrosyl radical and disappear thereafter.  相似文献   

2.
Herpes simplex virus ribonucleotide reductase (RR) is a tetrameric enzyme composed of two homodimers of large R1 and small R2 subunits with a tyrosyl free radical located on the small subunit. Irradiation of the holoenzyme yielded simple exponential decay curves and an estimated functional target size of 315 kDa. Western blot analysis of irradiated holoenzyme R1 and R2 yielded target sizes of 281 kDa and 57 kDa (approximately twice their expected size). Irradiation of free R1 and analysis by all methods yielded a single exponential decay with target sizes ranging from 128-153 kDa. For free R2, quantitation by enzyme activity and Western blot analyses yielded simple inactivation curves but considerably different target sizes of 223 kDa and 19 kDa, respectively; competition for radioligand binding in irradiated R2 subunits yielded two species, one with a target size of approximately 210 kDa and the other of approximately 20 kDa. These results are consistent with a model in which there is radiation energy transfer between the two monomers of both R1 and R2 only in the holoenzyme, a radiation-induced loss of free radical only in the isolated R2, and an alteration of the tertiary structure of R2.  相似文献   

3.
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.  相似文献   

4.
R N Armstrong  E T Kaiser 《Biochemistry》1978,17(14):2840-2845
The spectrophotometric titration of SH groups in adenosine 3',5'-monophosphate (cAMP) dependent protein kinase from bovine heart muscle with 5,5'-dithiobis(2-nitrobenzoic acid)(DTNB) is described. The holoenzyme (R2C2) contains 16 SH groups, 12 of which react with DTNB in the native enzyme. The SH groups are distributed 2 per catalytic (C) and 4 per regulatory (R) subunit. The binding of cAMP to the holoenzyme or isolated R subunit prevents the reaction of one SH group per R subunit. Modification of SH groups, however, has only a small effect on cAMP binding to R. Reaction of the C subunit with DTNB results in less than 95% loss of catalytic activity. The kinetics of the DTNB reaction and the reversal of the inactivation process by treatment with dithiothreitol suggest that the inactivation is associated with SH group modification. Inactivation studies with the holoenzyme show that: (1) the R subunit inhibits DTNG inactivation of the C subunit in the absence of cAMP; (2) the rate of inactivation of the dephosphoholoenzyme in the presence of cAMP is considerably faster than that of the free catalytic subunit; and (3) the rate of inactivation of the phosphoholoenzyme in the presence of cAMP is faster than that of the C subunit but slower than the dephosphoholoenzyme. The results are interpreted as evidence for a significant interaction of the R and C subunits in the presence of saturating concentrations of cAMP. This interaction is modulated by the state of phosphorylation of R. To account for the inactivation data, a short-lived ternary complex containing R, C, and cAMP is postulated to be in rapid equilibrium with the subunits.  相似文献   

5.
Ribonucleotide reductase (RDPR) from Escherichia coli is composed of two subunits, R1 and R2, both of which are required to catalyze the conversion of nucleotides to deoxynucleotides. This reduction process is accompanied by oxidation of two cysteines within the active site to a disulfide. One of these putative active site cysteines, C225, has been mutated to a serine, and the properties of this mutant (C225SR1) have been investigated in detail. Incubation of C225SR1 and R2 with [3'-3H,U-14C]UDP results in time-dependent inactivation of the enzyme! This inactivation is accompanied by production of 2.4 uracils, 3H2O, and 3H,14C-labeled protein with an absorbance change at 320 nm. There is an isotope effect (kH/k3H) on uracil production of 3.2. In addition, the tyrosyl radical on R2 is reduced. The observation of 3H2O, indicative of 3' carbon-hydrogen bond cleavage and loss of the tyrosyl radical, provides a direct test of our mechanistic hypothesis that cleavage of this bond occurs concomitantly with tyrosyl radical reduction. Incubation of [3'-2H]UDP with C225SR1 and R2 resulted in a V and V/K isotope effect on loss of the radical of 2.0 and 2.0, respectively. These studies provide the first direct evidence for protein radical involvement in catalysis. Reduction of the tyrosyl radical on R2 is accompanied by a stoichiometric cleavage of the R1 polypeptide into two new polypeptides of 26 and 61 kDa. The 26-kDa polypeptide is the N-terminus of R1, and hence cleavage of the polypeptide is occurring in the region of the mutation. The N-terminus of the 61-kDa polypeptide is blocked.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The regeneration of the tyrosyl radical in chemically reduced native or p-butoxyphenol-treated radical free forms of mouse ribonucleotide reductase R2 protein has been studied. Chemical reduction has been achieved by treatment with light-activated flavin compounds: deazaflavin, flavin mononucleotide, or deazaflavin with methylviologen as mediator. The admission of air to the flavin reduced mouse R2 protein results in regeneration of up to 59% of the initial tyrosyl radical contents, whereas not more than 6% could be regenerated in the p-butoxyphenol-treated form. The mixed-valent EPR signal generated in the p-butoxyphenol-treated mouse R2 protein is different from the spectrum observed after flavin reduction in the native mouse R2 protein, indicating that treatment of the protein with p-butoxyphenol results in a structural rearrangement of the diferric/radical site. The presence of 0.1 mM Fe(II) in the anaerobic protein/buffer solution significantly improves the regeneration of tyrosyl radical upon admission of air to the flavin reduced mouse R2 protein, but less to the protein treated with p-butoxyphenol.  相似文献   

7.
The B2 subunit of ribonucleotide reductase from Escherichia coli contains a stable tyrosyl free radical and an antiferromagnetically coupled dimeric iron center with high-spin ferric ions. The tyrosyl radical is an oxidized form of tyrosine-122. This study shows that the B2 protein has a fully reduced state, denoted reduced B2, characterized by a normal nonradical tyrosine-122 residue and a dimeric ferrous iron center. Reduced B2 can be formed either from active B2 by a three-electron reduction in the presence of suitable mediators or from apoB2 by addition of two equimolar amounts of ferrous ions in the absence of oxygen. The oxidized tyrosyl radical and the ferric iron center can be generated from reduced B2 by the admission of air. The tyrosyl radical can be selectively reduced by one-electron reduction in the presence of a suitable mediator, yielding metB2, a form that seems identical with the form resulting from treatment of active B2 with hydroxyurea. 1H NMR was used to characterize the paramagnetically shifted resonances associated with the reduced iron center. Prominent resonances were observed around 45 ppm (nonexchangeable with solvent) and 57 ppm (exchangeable with solvent) at 37 degrees C. From the temperature dependence of the chemical shifts of these resonances it was concluded that the ferrous ions in reduced B2 are only weakly, if at all, antiferromagnetically coupled. By comparison with data on the similar iron center of deoxyhemerythrin it is suggested that the 57 ppm resonance should be assigned to protons in histidine ligands of the iron center.  相似文献   

8.
Ribonucleotide reductase is an essential enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides for use in DNA synthesis. Ribonucleotide reductase from Escherichia coli consists of two subunits, R1 and R2. The R2 subunit contains an unusually stable radical at tyrosine 122 that participates in catalysis. Buried deep within a hydrophobic pocket, the radical is inaccessible to solvent although subject to inactivation by radical scavengers. One such scavenger, hydroxyurea, is a highly specific inhibitor of ribonucleotide reductase and therefore of DNA synthesis; thus it is an important anticancer and antiviral agent. The mechanism of radical access remains to be established; however, small molecules may be able to access Tyr-122 directly via channels from the surface of the protein. We used random oligonucleotide mutagenesis to create a library of 200,000 R2 mutants containing random substitutions at five contiguous residues (Ile-74, Ser-75, Asn-76, Leu-77, Lys-78) that partially comprise one side of a channel where Tyr-122 is visible from the protein surface. We subjected this library to increasing concentrations of hydroxyurea and identified mutants that enhance survival more than 1000-fold over wild-type R2 at high drug concentrations. Repetitive selections yielded S75T as the predominant R2 mutant in our library. Purified S75TR2 exhibits a radical half-life that is 50% greater than wild-type R2 in the presence of hydroxyurea. These data represent the first demonstration of R2 protein mutants in E. coli that are highly resistant to hydroxyurea; elucidation of their mechanism of resistance may provide valuable insight into the development of more effective inhibitors.  相似文献   

9.
The M2 subunit of mammalian ribonucleotide reductase was purified to homogeneity from hydroxyurea-resistant, M2-overproducing mouse cells. The purification procedure involved affinity chromatography on an anti-tubulin antibody-Sepharose column and high performance gel permeation chromatography. The pure protein is a dimer of Mr = 88,000, containing stoichiometric amounts of a non-heme iron center and a tyrosyl free radical. The radical is destroyed by hydroxyurea but can readily be regenerated on incubation of the radical-free protein alone with iron-dithiothreitol in the presence of air. The ability to spontaneously regenerate the tyrosyl radical distinguishes protein M2 from the corresponding subunit of Escherichia coli ribonucleotide reductase, protein B2, but apart from that the two proteins are very similar.  相似文献   

10.
Each R2 subunit of mammalian ribonucleotide reductase contains a pair of high spin ferric ions and a tyrosyl free radical essential for activity. To study the mechanism of tyrosyl radical formation, substoichiometric amounts of Fe(II) were added to recombinant mouse R2 apoprotein under strictly anaerobic conditions and then the solution was exposed to air. Low temperature EPR spectroscopy showed that the signal from the generated tyrosyl free radical correlated well with the quantity of the Fe(II) added with a stoichiometry of 3 Fe(II) needed to produce 1 tyrosyl radical: 3 Fe(II) + P + O2 + Tyr-OH + H+----Fe(III)O2-Fe(III)-P + H2O. + Tyr-O. + Fe(III), where P is an iron-binding site of protein R2 and Tyr-OH is the active tyrosyl residue. The O-O bond of a postulated intermediate O2(2-)-Fe(III)2-P state is cleaved by the extra electron provided by Fe(II) leading to formation of OH., which in turn reacts with Tyr-OH to give Tyr-O.. In the presence of ascorbate, added to reduce the monomeric Fe(III) formed, 80% of the Fe(II) added produced a radical. The results strongly indicate that each dimeric Fe(III) center during its formation can generate a tyrosyl-free radical and that iron binding to R2 apoprotein is highly cooperative.  相似文献   

11.
The rates of reduction of the diferric/radical center in mouse ribonucleotide reductase protein R2 were studied by light absorption and EPR in the native protein and in three point mutants of conserved residues involved in the proposed radical transfer pathway (D266A, W103Y) or in the unstructured C terminal domain (Y370W). The pseudo-first order rate constants for chemical reduction of the tyrosyl radical and diferric center by hydroxyurea, sodium dithionite or the dihydro form of flavin adenine dinucleotide, were comparable with or higher (particularly D266A, by dithionite) than in native R2. Molecular modeling of the D266A mutant showed that the iron/radical site should be more accessible for external reductants in the mutant than in native R2. The results indicate that no specific pathway is required for the reduction. The dihydro form of flavin adenine dinucleotide was found to be a very efficient reductant in the studied proteins compared to dithionite alone. The EPR spectra of the mixed-valent Fe(II)Fe(III) sites formed by chemical reduction in the D266A and W103Y mutants were clearly different from the spectrum observed in the native protein, indicating that the structure of the diferric site was affected by the mutations, as also suggested by the modeling study. No difference was observed between the mixed-valent EPR spectra generated by chemical reduction in Y370W mutant and native mouse R2 protein.  相似文献   

12.
Herpes simplex virus ribonucleotide reductase consists of two nonidentical subunits, proteins R1 and R2, which are required together for activity. Active R2 protein contains a tyrosyl free radical and a binuclear iron center. A truncated form of the R2 subunit, lacking 7 amino acid residues in the carboxyl terminus, was constructed, overexpressed in Escherichia coli and purified to homogeneity. In the presence of ferrous iron and oxygen, the truncated protein readily generated similar amounts of tyrosyl free radical as the intact protein. However, the radical showed differences in EPR characteristics in the truncated protein compared with the normal one, indicating an altered structural arrangement of the radical relative to the iron center. The truncated R2* protein was completely devoid of binding affinity to the R1 protein, demonstrating that the subunit interaction is totally dependent on the 7 outermost carboxyl-terminal amino acids of protein R2.  相似文献   

13.
The flavonoid (-)-epicatechin was previously demonstrated to interfere with tyrosine nitration by peroxynitrite [Biochem. Biophys. Res. Commun. 285 (2001) 782]. This effect was hypothesized to be based upon an interaction of epicatechin with a transiently generated tyrosyl radical. In the present study, using electron paramagnetic resonance, we demonstrate that (-)-epicatechin is capable of destabilizing the tyrosyl radical of the mouse ribonucleotide reductase R2 component. First-order rate constants for the disappearance of tyrosyl radical signals were 1 x 10(-4) and 2 x 10(-4)s(-1)for epicatechin and hydroxyurea, a well-known tyrosyl radical scavenger, respectively. In keeping with scavenging the ribonucleotide reductase tyrosyl radical, cellular production of deoxyribonucleotides and DNA synthesis were impaired by (-)-epicatechin in normal human keratinocytes and in human squamous carcinoma cells.  相似文献   

14.
Ribonucleotide reductase catalyzes all de novo synthesis of deoxyribonucleotides. The mammalian enzyme consists of two non-identical subunits, the R1 and R2 proteins, each inactive alone. The R1 subunit contains the active site, whereas the R2 protein harbors a binuclear iron center and a tyrosyl free radical essential for catalysis. It has been proposed that the radical properties of the R2 subunit are transferred approximately 35 A to the active site of the R1 protein, through a coupled electron/proton transfer along a conserved hydrogen-bonded chain, i.e. a radical transfer pathway (RTP). To gain a better insight into the properties and requirements of the proposed RTP, we have used site-directed mutagenesis to replace the conserved tyrosine 370 in the mouse R2 protein with tryptophan or phenylalanine. This residue is located close to the flexible C terminus, known to be essential for binding to the R1 protein. Our results strongly indicate that Tyr(370) links the RTP between the R1 and R2 proteins. Interruption of the hydrogen-bonded chain in Y370F inactivates the enzyme complex. Alteration of the same chain in Y370W slows down the RTP, resulting in a 58 times lower specific activity compared with the native R2 protein and a loss of the free radical during catalysis.  相似文献   

15.
Ribonucleotide reduction, the unique step in the pathway to DNA synthesis, is catalyzed by enzymes via radical-dependent redox chemistry involving an array of diverse metallocofactors. The nucleotide reduction gene (nrdF) encoding the metallocofactor containing small subunit (R2F) of the Corynebacterium ammoniagenes ribonucleotide reductase was reintroduced into strain C. ammoniagenes ATCC 6872. Efficient homologous expression from plasmid pOCA2 using the tac-promotor enabled purification of R2F to homogeneity. The chromatographic protocol provided native R2F with a high ratio of manganese to iron (30:1), high activity (69 μmol 2'-deoxyribonucleotide·mg?1 ·min?1) and distinct absorption at 408 nm, characteristic of a tyrosyl radical (Y˙), which is sensitive to the radical scavenger hydroxyurea. A novel enzyme assay revealed the direct involvement of Y˙ in ribonucleotide reduction because 0.2 nmol 2'-deoxyribonucleotide was formed, driven by 0.4 nmol Y˙ located on R2F. X-band electron paramagnetic resonance spectroscopy demonstrated a tyrosyl radical at an effective g-value of 2.004. Temperature dependent X/Q-band EPR studies revealed that this radical is coupled to a metallocofactor. Similarities of the native C. ammoniagenes ribonucleotide reductase to the in vitro activated Escherichia coli class Ib enzyme containing a dimanganese(III)-tyrosyl metallocofactor are discussed.  相似文献   

16.
Nitric oxide (NO) has been previously shown to inhibit crude preparations of ribonucleotide reductase, a key enzyme in DNA synthesis, and to destroy the essential tyrosyl free radical in pure recombinant R2 subunit of the enzyme. In R2-overexpressing TA3 cells, a decrease in the tyrosyl radical was observed by whole-cell EPR spectroscopy, as soon as 4 h after NO synthase induction by immunological stimuli. Complete loss of the tyrosyl EPR signal occurred after 7 h in cells cultured at a high density. Disappearance of the tyrosyl radical was prevented by N omega-nitro-L-arginine, a specific inhibitor of NO synthesis, and by oxyhemoglobin, which reacts rapidly with NO. It was reproduced by S-nitrosoglutathione, a NO-releasing molecule. Stable end products of NO synthase metabolism did not affect the radical. Immunoblot analysis of the R2 subunit indicated that expression of the protein was not influenced by NO synthase activity. These results establish that NO, or a labile product of NO synthase, induces the disappearance of the R2-centered tyrosyl radical. Since the radical is necessary for ribonucleotide reductase activity, its destruction by NO would contribute markedly to the antiproliferative action exerted by macrophage-type NO synthase.  相似文献   

17.
Ribonucleotide reductase in mammalian cells is composed of two nonidentical subunits, proteins M1 and M2. Protein M2 contains a tyrosyl free radical, essential for activity, which can be quantified directly in frozen, packed cells by EPR spectroscopy. A 3-7-fold increase in the concentration of tyrosyl radical-containing M2 subunit was observed when mouse mammary tumor TA 3 cells passed from the G1 to the S phase of the cell cycle. Similar results were obtained with cells synchronized by isoleucine starvation or separated by centrifugal elutriation. Addition of deuterated tyrosine to cells give rise to a different EPR signal in newly synthesized protein M2. Pulse-chase experiments with deuterated tyrosine showed unequivocally that the S phase-correlated increase in radical-containing M2 subunit was due to de novo protein synthesis. Labeled M2 molecules disappeared with a half-life of 3 h, and therefore new molecules must be synthesized at a high rate during the S phase. In contrast, after hydroxyurea inactivation, cells rapidly regenerated the tyrosyl radical in already existing protein M2 molecules. This enzyme activation mechanism is clearly different from the one responsible for regulating protein M2 activity during the cell cycle.  相似文献   

18.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

19.
The enzyme activity of Escherichia coli ribonucleotide reductase requires the presence of a stable tyrosyl free radical and diiron center in its smaller R2 component. The iron/radical site is formed in a reconstitution reaction between ferrous iron and molecular oxygen in the protein. The reaction is known to proceed via a paramagnetic intermediate X, formally a Fe(III)-Fe(IV) state. We have used 9.6 GHz and 285 GHz EPR to investigate intermediates in the reconstitution reaction in the iron ligand mutant R2 E238A with or without azide, formate, or acetate present. Paramagnetic intermediates, i.e. a long-living X-like intermediate and a transient tyrosyl radical, were observed only with azide and under none of the other conditions. A crystal structure of the mutant protein R2 E238A/Y122F with a diferrous iron site complexed with azide was determined. Azide was found to be a bridging ligand and the absent Glu-238 ligand was compensated for by azide and an extra coordination from Glu-204. A general scheme for the reconstitution reaction is presented based on EPR and structure results. This indicates that tyrosyl radical generation requires a specific ligand coordination with 4-coordinate Fe1 and 6-coordinate Fe2 after oxygen binding to the diferrous site.  相似文献   

20.
Interaction of a 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase (ATCase) with the catalytic (C) subunit leads to dramatic changes in enzyme activity and affinity for ligand binding at the active sites. The complex between the polypeptide (zinc domain) and wild-type C trimer exhibits hyperbolic kinetics in contrast to the sigmoidal kinetics observed with the intact holoenzyme. Moreover, the Scatchard plot for binding N-(phosphonacetyl)-L-aspartate (PALA) to the complex is linear with a Kd corresponding to that evaluated for the holoenzyme converted to the relaxed (R) state. Additional evidence that the binding of the zinc domain to the C trimer converts it to the R state was attained with a mutant form of ATCase in which Lys 164 in the catalytic chain is replaced by Glu. As shown previously (Newell, J.O. & Schachman, H.K., 1990, Biophys. Chem. 37, 183-196), this mutant holoenzyme, which exists in the R conformation even in the absence of active site ligands, has a 50-fold greater affinity for PALA than the free C subunit. Adding the zinc domain to the C trimer containing the Lys 164-->Glu substitution leads to a 50-fold enhancement in the affinity for the bisubstrate analog yielding a value of Kd equal to that for the holoenzyme. A different mutant ATCase containing the Gln 231 to Ile replacement was shown (Peterson, C.B., Burman, D.L., & Schachman, H.K., 1992, Biochemistry 31, 8508-8515) to be much less active as a holoenzyme than as the free C trimer. For this mutant holoenzyme, the addition of substrates does not cause its conversion to the R state. However, the addition of the zinc domain to the Gln 231-->Ile C trimer leads to a marked increase in enzyme activity, and PALA binding data indicate that the complex resembles the R state of the holoenzyme. This interaction leading to a more active conformation serves as a model of intergenic complementation in which peptide binding to a protein causes a conformational correction at a site remote from the interacting surfaces resulting in activation of the protein. This linkage was also demonstrated by difference spectroscopy using a chromophore covalently bound at the active site, which served as a spectral probe for a local conformational change. The binding of ligands at the active sites was shown also to lead to a strengthening of the interaction between the zinc domain and the C trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号