首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DNA-protein cross-links (DPCs) present a formidable obstacle to cellular processes because they are "superbulky" compared with the majority of chemical adducts. Elimination of DPCs is critical for cell survival because their persistence can lead to cell death or halt cell cycle progression by impeding DNA and RNA synthesis. To study DPC repair, we have used DNA methyltransferases to generate unique DPC adducts in oligodeoxyribonucleotides or plasmids to monitor both in vitro excision and in vivo repair. We show that HhaI DNA methyltransferase covalently bound to an oligodeoxyribonucleotide is not efficiently excised by using mammalian cell-free extracts, but protease digestion of the full-length HhaI DNA methyltransferase-DPC yields a substrate that is efficiently removed by a process similar to nucleotide excision repair (NER). To examine the repair of that unique DPC, we have developed two plasmid-based in vivo assays for DPC repair. One assay shows that in nontranscribed regions, DPC repair is greater than 60% in 6 h. The other assay based on host cell reactivation using a green fluorescent protein demonstrates that DPCs in transcribed genes are also repaired. Using Xpg-deficient cells (NER-defective) with the in vivo host cell reactivation assay and a unique DPC indicates that NER has a role in the repair of this adduct. We also demonstrate a role for the 26 S proteasome in DPC repair. These data are consistent with a model for repair in which the polypeptide chain of a DPC is first reduced by proteolysis prior to NER.  相似文献   

2.
Braithwaite E  Wu X  Wang Z 《Mutation research》1999,424(1-2):207-219
DNA is frequently damaged by endogenous agents inside the cells. Some exogenous agents such as polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and may thus contribute to the 'background' DNA damage in humans. DNA lesions are normally removed by various repair mechanisms. The major repair mechanisms for various DNA lesions are summarized. In contrast to the extensively studied repair mechanisms, much less is known about the relative repair efficiencies of various DNA lesions. Since DNA repair is a crucial defense against carcinogenesis, it may constitute an important factor affecting the carcinogenicity of DNA damaging agents. We have adopted a human cell-free system for measuring relative DNA repair efficiencies based on the concept of repair competition between acetylaminofluorene adducts and other DNA lesions of interest. Using this in vitro system, we determined the relative repair efficiencies of PAH adducts induced by: anti-(+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE), anti-(+/-)-benz[a]anthracene-trans-3,4-dihydrodiol-1,2-epoxide (BADE-I), anti-(+/-)-benz[a]anthracene-trans-8,9-dihydrodiol-10, 11-epoxide (BADE-II), anti-(+/-)-benzo[b]fluoranthene-trans-9, 10-dihydrodiol-11,12-epoxide (BFDE), anti-(+/-)-chrysene-trans-1, 2-dihydrodiol-3,4-epoxide (CDE), and anti-(+/-)-dibenzo[a, l]pyrene-trans-11,12-dihydrodiol-13,14-epoxide (DBPDE). While damage by BPDE, DBPDE, CDE, and BFDE were repaired by nucleotide excision repair as efficiently as AAF adducts, the repair of BADE-I and BADE-II adducts were significantly slower in human cell extracts. Damage by DBPDE at 3 microM in vitro yielded approximately 5-fold higher DNA adducts than BPDE as determined by quantitative PCR. This potent DNA reactivity may account in part for the potent carcinogenicity of dibenzo[a,l]pyrene. The correlation of these results to the carcinogenic properties of the PAH compounds is discussed. Furthermore, we show that NER plays a role in AP site repair in vivo in the eukaryotic model organism yeast.  相似文献   

3.
Choudhury S  Pan J  Amin S  Chung FL  Roy R 《Biochemistry》2004,43(23):7514-7521
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA produces four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine (HNE-dG); background levels of these adducts have been detected in tissues of animals and humans. There is evidence to suggest that these adducts are mutagenic and involved in liver carcinogenesis in patients with Wilson's disease and in other human cancers. Here, we present biochemical evidence that in human cell nuclear extracts the HNE-dG adducts are repaired by the nucleotide excision repair (NER) pathway. To investigate the recognition and repair of HNE-dG adducts in human cell extracts, we prepared plasmid DNA substrates modified by HNE. [(32)P]-Postlabeling/HPLC determined that the HNE-dG adduct levels were approximately 1200/10(6) dG of plasmid DNA substrate. We used this substrate in an in vitro repair-synthesis assay to study the complete repair of HNE-induced DNA adducts in cell-free extracts. We observed that nuclear extracts from HeLa cells incorporated a significant amount of alpha[(32)P]dCTP in DNA that contained HNE-dG adducts by comparison with UV-irradiated DNA as the positive control. Such repair synthesis for UV damage or HNE-dG adducts did not occur in XPA cell nuclear extracts that lack the capacity for NER. However, XPA cells complemented with XPA protein restored repair synthesis for both of these adducts. To verify that HNE-dG adducts in DNA were indeed repaired, we measured HNE-dG adducts in the post-repaired DNA substrates by the [(32)P]-postlabeling/HPLC method, showing that 50-60% of HNE-dG adducts were removed from the HeLa cell nuclear extracts after 3 h at 30 degrees C. The repair kinetics indicated that the excision rate is faster than the rate of gap-filling/DNA synthesis. Furthermore, the HNE-dG adduct isomers 2 and 4 appeared to be repaired more efficiently at early time points than isomers 1 and 3.  相似文献   

4.
In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences. Monomodified single-stranded plasmids exhibit low survival in non-SOS induced E. coli cells; we show here that the presence of a homologous sequence enhances the survival of the damaged plasmid more than 10-fold in a RecA-dependent way. Remarkably, in an NER proficient strain, 80% of the surviving colonies result from the UvrA-dependent repair of the AAF lesion in a mechanism absolutely requiring RecA and RecF activity, while the remaining 20% of the surviving colonies result from homologous recombination mechanisms. These results uncover a novel mechanism - RecA-mediated excision repair - in which RecA-dependent pairing of the mono-modified single-stranded template with a complementary sequence allows its repair by the UvrABC excinuclease.  相似文献   

5.
Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N(2)-cyclic propano-2'-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity.  相似文献   

6.
We searched for nucleotide excision repair in human cell-free extracts using two assays: damage-specific incision of DNA (the nicking assay) and damage-stimulated DNA synthesis (the repair synthesis assay). HeLa cell-free extract prepared by the method of Manley et al. (1980) has a weak nicking activity on UV irradiated DNA and the nicking is only slightly reduced when pyrimidine dimers are eliminated from the substrate by DNA photolyase. In contrast to the nicking assay, the extract gives a strong signal with UV irradiated substrate in the repair synthesis assay. The repair synthesis activity is ATP dependent and is reduced by about 50% by prior treatment of the substrate with DNA photolyase indicating that this fraction of repair synthesis is due to removal of pyrimidine dimers by nucleotide excision. Psoralen and cisplatin adducts which are known to be removed by nucleotide excision repair also elicited repair synthesis activity 5-10 fold above the background synthesis. When M13RF DNA containing a uniquely placed psoralen adduct was used in the reaction, complete repair was achieved in a fraction of molecules as evidenced by the restoration of psoralen inactivated KpnI restriction site. This activity is absent in xeroderma pigmentosum group A cells. We conclude that our cell-free extract contains the human nucleotide excision repair enzyme activity.  相似文献   

7.
DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications.  相似文献   

8.
Adozelesin is a synthetic analog of the antitumor antibiotic CC-1065, which alkylates the N3 of adenine in the minor groove in a sequence-selective manner. Since the cytotoxic potency of a DNA alkylating agent can be modulated by DNA excision repair system, we investigated whether nucleotide excision repair (NER) and base excision repair (BER) enzymes are able to excise the bulky DNA adduct induced by adozelesin. The UvrABC nuclease and 3-methyladenine-DNA glycosylase, that exhibit a broad spectrum of substrate specificity, were selected as typical NER and BER enzymes, respectively. The adozelesin-DNA adduct was first formed in the radiolabeled restriction DNA fragment and its excision by purified repair enzymes was monitored on a DNA sequencing gel. The treatment of the DNA adduct with a purified UvrABC nuclease and sequencing gel analysis of cleaved DNA showed that UvrABC nuclease was able to incise the adozelesin adduct. The incision site corresponded to the general nuclease incision site. Excision of this adduct by 3-methyladenine-DNA glycosylases was determined following the treatment of the DNA adduct with a homogeneous recombinant bacterial, rat and human 3-methyladenine-DNA glycosylases. Abasic sites generated by DNA glycosyalses were cleaved by the associated lyase activity of the E. coli formamidopyrimidine-DNA glycosylase (Fpg). Resolution of cleaved DNA on a sequencing gel showed that the DNA glycosylase from different sources could not release the N3-adenine adducts. A cytotoxicity assay using E. coli repair mutant strains showed that E. coli mutant strains defective in the uvrA gene were more sensitive to cell killing by adozelesin than E. coli mutant strain defective in the alkA gene or the wild type. These results suggest that the NER pathway seems to be the major excision repair system in protecting cells from the cytotoxicity of adozelesin.  相似文献   

9.
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.  相似文献   

10.
Wang D  Hara R  Singh G  Sancar A  Lippard SJ 《Biochemistry》2003,42(22):6747-6753
Nucleotide excision repair is a major cellular defense mechanism against the toxic effects of the anticancer drug cisplatin and other platinum-based chemotherapeutic agents. In this study, mononucleosomes were prepared containing either a site-specific cis-diammineplatinum(II)-DNA intrastrand d(GpG) or a d(GpTpG) cross-link. The ability of the histone core to modulate the excision of these defined platinum adducts was investigated as a model for exploring the cellular response to platinum-DNA adducts in chromatin. Comparison of the extent of repair by mammalian cell extracts of free and nucleosomal DNA containing the same platinum-DNA adduct reveals that the nucleosome significantly inhibits nucleotide excision repair. With the GTG-Pt DNA substrate, the nucleosome inhibits excision to about 10% of the level observed with free DNA, whereas with the less efficient GG-Pt DNA substrate the nucleosome inhibited excision to about 30% of the level observed with free DNA. The effects of post-translational modification of histones on excision of platinum damage from nucleosomes were investigated by comparing native and recombinant nucleosomes containing the same intrastrand d(GpTpG) cross-link. Excision from native nucleosomal DNA is approximately 2-fold higher than the level observed with recombinant material. This result reveals that post-translational modification of histones can modulate nucleotide excision repair from damaged chromatin. The in vitro system established in this study will facilitate the investigation of platinum-DNA damage by DNA repair processes and help elucidate the role of specific post-translational modification in NER of platinum-DNA adducts at the physiologically relevant nucleosome level.  相似文献   

11.
12.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

13.
The function of the human nucleotide excision repair (NER) apparatus is to remove bulky adducts from damaged DNA. In an effort to gain insights into the molecular mechanisms involved in the recognition and excision of bulky lesions, we investigated a series of site specifically modified oligonucleotides containing single, well-defined polycyclic aromatic hydrocarbon (PAH) diol epoxide-adenine adducts. Covalent adducts derived from the bay region PAH, benzo[a]pyrene, are removed by human NER enzymes in vitro. In contrast, the stereochemically analogous N(6)-dA adducts derived from the topologically different fjord region PAH, benzo[c]phenanthrene, are resistant to repair. The evasion of DNA repair may play a role in the observed higher tumorigenicity of the fjord region PAH diol epoxides. We are elucidating the structural and thermodynamic features of these adducts that may underlie their marked distinction in biologic function, employing high-resolution nuclear magnetic resonance studies, measurements of thermal stabilities of the PAH diol epoxide-modified oligonucleotide duplexes, and molecular dynamics simulations with free energy calculations. Our combined findings suggest that differences in the thermodynamic properties and thermal stabilities are associated with differences in distortions to the DNA induced by the lesions. These structural effects correlate with the differential NER susceptibilities and stem from the intrinsically distinct shapes of the fjord and bay region PAH diol epoxide-N(6)-adenine adducts.  相似文献   

14.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

15.
16.
Tobacco smoking is one of the major risk factors in pathogenesis of head and neck squamous cell carcinomas (HNSCC). Many of the chemical compounds present in tobacco are well-known carcinogens which form adducts with DNA. Cells remove these adducts mainly by the nucleotide excision repair pathway (NER). NER also eliminates a broad spectrum of pyrimidine dimers (CPD) and photo-products (6-4PP) induced by UV-radiation or DNA cross-links after cisplatin anti-cancer treatment. In this study DNA damage and repair was examined in peripheral blood lymphocytes obtained from 20 HNSCC patients and 20 healthy controls as well as HTB-43 larynx and SSC-25 tongue cancer cell lines. DNA repair kinetics in the examined cells after cisplatin or UV-radiation treatment were investigated using alkaline comet assay during 240min of post-treatment incubation. MTT assay was used to analyse cell viability and the Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis after treating the cells with UV-radiation at dose range from 0.5 to 60J/m(2). NER capability was assessed in vitro with cell extracts by the use of a bacterial plasmid irradiated with UV-light as a substrate for the repair. The results show that lymphocytes from HNSCC patients and HTB-43 or SSC-25 cancer cells were more sensitive to genotoxic treatment with UV-radiation and displayed impaired DNA repair. Also evidenced was a higher rate of apoptosis induction after UV-radiation treatment of lymphocytes from the HNSCC patients and the HTB-43 cancer cells than after treatment of those from healthy donors. Finally, our results showed that there was a significant decrease in NER capacity in HTB-43 or SSC-25 cancer cells as well as in peripheral blood lymphocytes of HNSCC patients compared to controls. In conclusion, we suggest that the impaired NER pathway might be a critical factor in pathogenesis of head and neck cancer.  相似文献   

17.
Doxorubicin, a widely used anthracycline anticancer agent, acts as a topoisomerase II poison but can also form formaldehyde-mediated DNA adducts. This has led to the development of doxorubicin derivatives such as doxoform, which can readily form adducts with DNA. This work aimed to determine which DNA repair pathways are involved in the recognition and possible repair of anthracycline-DNA adducts. Cell lines lacking functional proteins involved in each of the five main repair pathways, mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end-joining (NHEJ) were examined for sensitivity to various anthracycline adduct-forming treatments. The treatments used were doxorubicin, barminomycin (a model adduct-forming anthracycline) and doxoform (a doxorubicin-formaldehyde conjugate). Cells with deficiencies in MMR, BER and NHEJ were equally sensitive to adduct-forming treatments compared to wild type cells and therefore these pathways are unlikely to play a role in the repair of these adducts. Some cells with deficiencies in the NER pathway (specifically, those lacking functional XPB, XPD and XPG), displayed tolerance to adducts induced by both barminomycin and doxoform and also exhibited a decreased level of apoptosis in response to adduct-forming treatments. Conversely, two HR deficient cell lines were shown to be more sensitive to barminomycin and doxoform than HR proficient cells, indicating that this pathway is also involved in the repair response to anthracycline-DNA adducts. These results suggest an unusual damage response pathway to anthracycline adducts involving both NER and HR that could be used to optimise cancer therapy for tumours with either high levels of NER or defective HR. Tumours with either of these characteristics would be predicted to respond particularly well to anthracycline-DNA adduct-forming treatments.  相似文献   

18.
There is an increasing demand for phenotyping assays in the field of human functional genetics. DNA repair activity is representative of this functional approach, being seen as a valuable biomarker related to cancer risk. Repair activity is evaluated by incubating a cell extract with a DNA substrate containing lesions specific for the DNA repair pathway of interest. Enzymic incision at the lesion sites can be measured by means of the comet assay (single cell gel electrophoresis). The assay is particularly applicable for evaluation of base and nucleotide excision repair pathways (BER and NER). Substrate DNA containing oxidised purines gives a measure of BER, while UV-induced photolesions are the substrate for NER. While applications of comet-based DNA repair assays continue to increase, there are no commonly accepted standard protocols, which complicates inter-laboratory comparisons of results.  相似文献   

19.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

20.
Mice that are genetically engineered are becoming increasingly more powerful tools for understanding the molecular pathology of many human hereditary diseases, especially those that confer an increased predisposition to cancer. We have generated mouse strains defective in the Xpc gene, which is required for nucleotide excision repair (NER) of DNA. Homozygous mutant mice are highly prone to skin cancer following exposure to UVB radiation, and to liver and lung cancer following exposure to the chemical carcinogen acetylaminofluorene (AAF). Skin cancer predisposition is significantly augmented when mice are additionally defective in Trp53 (p53) gene function. We also present the results of studies with mice that are heterozygous mutant in the Apex (Hap1, Ref-1) gene required for base excision repair and with mice that are defective in the mismatch repair gene Msh2. Double and triple mutant mice mutated in multiple DNA repair genes have revealed several interesting overlapping roles of DNA repair pathways in the prevention of mutation and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号