首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nodulated faba-beans ( Vicia faba L. var. minor) exhibiting high rates of N2 fixation (133 μmol C2H4 g−1 dry weight h−1), were subjected to water restriction. A loss of C2H2 reduction due to water stress was always associated with a decline of the leghemoglobin content for each of the 4 decreasing values of Ψmod. Electron micrographs showed ultrastructural alterations of the fixing tissue, which affected both partners and increased with the severity of water stress. In the nodule cytosol, the alkaline proteolysis approximately doubled when Ψmod decreased from −0.55 MPa to −1.55 MPa. Concomitantly, an increase of the nodule intracellular pH from 6.3 to 7.0 was observed. Proteolysis was due to serine proteases, exhibiting a pH-optimum of 8 and which actively degraded purified leghemoglobin in vitro (Km=100 μ M ). The degradation of leghemoglobin during water stress may contribute to the loss of C2H2 reduction and may affect the pattern of recovery upon rewatering.  相似文献   

2.
Sources of nitrous oxide production following wetting of dry soil   总被引:5,自引:0,他引:5  
Abstract Production of N2O was detected within 30 min of adding water to very dry soil (matric water potential < −9 MPa) sampled at the end of the dry season from an annual grassland of California, U.S.A. Using C2H2 to inhibit nitrification, we demonstrate that nitrification was a modest source of N2O in sieved soil wetted to a water content below field capacity, but that denitrification was the major source of N2O in sieved soils wetted to a water content above field capacity and in intact cores wetted either below or above field capacity. Significant abiological sources of N2O were not detected. De novo enzyme synthesis began within 4–8 h of wetting, and denitrifying enzyme activity doubled within 26 h, indicating that denitrifying bacteria can quickly transform their metabolic state from adaptation to severe drought stress to rapid exploitation of changing resources.  相似文献   

3.
Vibeke Holter 《Ecography》1984,7(2):165-170
Nitrogen fixation activity was determined for Lotus tenuis. Medicago lupulina and Trifolium pratense . The three species grew in clones in grassland in an area reclaimed from brackish water in the 1940s. The N2[C2H2]-fixation was measured in soil cores throughout 1974 and 1975. From cores taken in dense and uniform stands of the species, the yearly N2[C2H2]-fixation at maximum cover was estimated. L. tenuis fixed about 4 g N m−2 yr−1 (area with max. cover 130%), i.e. 30–56% of its requirement. Both M. lupulina and T. pratense fixed about 7 g N m−2 yr−1 (maximum cover 37% and 80%) i.e. 67% of their N-requirement. Average N2[C2H2]-fixation for the whole area was 0.4 g N m−2 yr−1, considerably less than the N-addition through rainfall.  相似文献   

4.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

5.
Abstract Nitrogenase activity of cells of Derxia gummosa (30 h growth in cultures without combined nitrogen) was not inhibited on adding nitrate. However, on adding either azaserine or methionine sulfoximine (MSX) with nitrate to these cells, nitrogenase (C2H2 reduction) was inhibited because nitrite accumulated in the reaction mixtures. Nitrite inhibition of the in vivo C2H2 reduction had a K i value of 16 μM. Both ammonia and glutamine inhibited N2 fixation (C2H2 reduction) in intact cells and in those treated with toluene. This inhibition by ammonia was relieved by methionine sulfoximine but not by glutamine. Azaserine enhanced the inhibition of nitrogenase produced by either ammonia or glutamine, since these treatments resulted in an accumulation of glutamine.  相似文献   

6.
Five nitrogen-fixing Azotobacter strains isolated from agricultural farms in West Bengal, India, were resistant to mercuric ion and organomercurials. Resistance of Hg-resistant bacteria to mercury compounds is mediated by the activities of mercuric reductase and organomercurial lyase in the presence of NADPH and GSH as cofactors. These bacteria showed an extended lag phase in the presence of 10–50 μmol 1-1 HgCl2. Nitrogen-fixing ability of these isolates was slightly inhibited when the mercuryresistant bacterial cells were preincubated with 10 μmol 1-1 HgCl2. Acetylene reduction by these bacteria was significantly inhibited (91-97%) by 50 μmol 1-1 HgCl2. However, when GSH and NADPH were added to the acetylene reduction assay mixture containing 50 μmol 1-1 HgCl2, only 42–50% inhibition of nitrogenase activity was observed. NADPH and GSH might have a role in suppressing the inhibition of N2-fixation in the presence of Hg compounds either by assisting Hg-detoxifying enzymes to lower Hg concentration in the assay mixture or by formation of adduct comprising Hg and GSH which is unable to inhibit nitrogen fixation.  相似文献   

7.
The (C2H4+ H2(C2H2))/15N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2H4+ H2(C2H2))/15N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2H2.  相似文献   

8.
Abstract: Different reduced sulfur compounds (H2S, FeS, S2O32−) were tested as electron donors for dissimilatory nitrate reduction in nitrate-amended sediment slurries. Only in the free sulfide-enriched slurries was nitrate appreciably reduced to ammonia (     ), with concomitant oxidation of sulfide to S0 (     ). The initial concentration of free sulfide appears as a factor determining the type of nitrate reduction. At extremely low concentrations of free S2− (metal sulfides) nitrate was reduced via denitrification whereas at higher S2− concentrations, dissimilatory nitrate reduction to ammonia (DNRA) and incomplete denitrification to gaseous nitrogen oxides took place. Sulfide inhibition of NO- and N2O- reductases is proposed as being responsible for the driving part of the electron flow from S2− to NH4+.  相似文献   

9.
We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio ( δ 15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant δ 15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio ( δ 13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition.  相似文献   

10.
An open flow-through gas system was used to investigate the effect of plant age on nitrogenase activity in relation to root respiration (measured as CO2 release) and supra-ambient O2 levels in 24- to 51-day-old, nodulated Pisum sativum L. cv. Bodil. The effect of assaying plants repeatedly was also studied. The respiratory efficiency of nitrogenase [mol CO2 (mol C2H4)−1] and the relative decline in nitrogenase (EC 1.7.99.2) activity in response to introduction of C2H2 in the gas stream were unaffected by plant age. In contrast, the nitrogenase-linked respiration as a proportion of total root respiration increased with time. Accordingly, the specific respiration linked-to growth and maintenace of the noduled root system decreased with time. C2H2 reduction and root respiration were increased by supra-ambient O2 levels, but the tolerance to high O2 concentrations seemed to decrease with plant age. Repeated C2H2 assays on the same plants decreased their rate of growth and N accumulation: in addition, nitrogenase activity and root respiration were somewhat negatively affected. The results indicate that results from experiments with plants of different ages cannot always be directly compared, and that repeated C2H2 assays on the same plants should be applied with caution in physiological work.  相似文献   

11.
Abstract Microbial populations, nitrogen mineralization potentials, and denitrification enzyme activities were examined in two abandoned carbolithic minesoils. Numbers and activities of bacteria and fungi were lower in nonamended than in lime and/or fly ash amended sites. Rates of aerobic NO3 production (3 to 38 μg-N kg−1 h−1) and anaerobic NO3 reduction to N2O (5 to 68 μg-N kg−1 h−1) were measured. Organisms capable of N2O production under anaerobic soil conditions were present in low numbers, and their activity was restricted in part by low soil pH. Nondenitrifying nitrate-reducing bacteria were more diverse and in greater numbers than respiratory denitrifiers and may have been responsible for N2O production in assays measuring denitrification enzyme activity.  相似文献   

12.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

13.
Abstract Anabaena variabilis can be grown with dependence on either molybdenum (Mo) or vanadium (V) in the medium with essentially the same growth rates. Vanadium cultures reduce C2H2 to C2H4 and partly (to 2–3%) to C2H6. These C2H4 and C2H6 formations can be shown to be strictly light dependent, proving that the gases are formed by the cyanobacterium. C2H4 and C2H6 productions are accompanied by a H2 formation which is much higher than in Mo cultures. Maximal C2H2-formation rates are 2/3 lower in V-grown cells compared to Mo control cultures. This is the first demonstration of a light-dependent ethane formation and of the occurrence of the alternative nitrogenase in any phototroph.  相似文献   

14.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

15.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

16.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

17.
The limitation of symbiotic nitrogen fixation due to P deficiency restricts the development of a sustainable agriculture, particularly in Mediterrancan and tropical soils. Common bean genotypes, APN18, BAT271, PVA846, POT51, G2633 and G12168, were grown in an aerated N-free nutrient solution at low (72 μmol plant-1 week-1) and control P supplies (360 μmol plant-1 week-1). Nitrogenase activity was estimated by in situ measurements of acetylene reduction activity (ARA) in a flow-through system. During the assays, maximum values of ARA (peak ARA) were reached between 20 and 30 min after exposure to C2H2, depending on P treatment and growth stage. Thereafter, a decline in C2H4 evolution was observed. This decline was most pronounced in low-P plants and there was a significant genotypic effect. ARA per plant was decreased by P deficiency, mostly because nodulation was delayed and the number and mass of nodules were reduced. The ARA decrease during pod filling was also activated by P deficiency. ARA per g dry weight nodule was increased by P deficiency in G2633 and G12168, unchanged in APN18, BAT271 and POT51 and decreased in PVA846. Except for the climbing type IV G2633, total N at harvest for all P treatments was correlated with the cumulative value of peak ARA and with peak ARA at early pod-filling which was the highest peak ARA throughout the growth cycle of type III bushy genotypes. We conclude that if phenology and growth habit are carefully considered, peak ARA is a reliable screen of genotypes for N2 fixation tolerance to P deficiency. Selection of lines with early nodulation under P deficiency is also advisable, and the effect of P deficiency on the nodule functioning needs to be considered.  相似文献   

18.
Abstract Anaerobic production and consumption of NO was measured in a calcic cambisol (KBE; pH 7.3) and a forest luvisol (PBE; pH 4.4) which were incubated at 80% water-holding capacity and continuously flushed with N2. Both NO production and NO consumption were negligibly low when nitrate and nitrite concentrations in the soil were exhausted. Addition of glucose alone had no effect, but addition of nitrate ± glucose greatly stimulated both NO production and NO consumption. NO consumption followed an apparent first-order reaction at low NO mixing ratios (1–3 ppmv), but a higher NO mixing ratios it followed Michaelis-Menten kinetics. In PBE the apparent K m was 980 ppbv NO (1.92 nM in soil water). During reduction of nitrate, nitrite intermediately accumulated and simultaneously, production rates of NO and N2O were at the maximum. Production rates of NO plus N2O amounted to 20% and 34% of the nitrate reduction rate in KBE and PBE, respectively. NO production was hyperbolically related to the nitrite concentration, indicating an apparent Km of 1.6 μg nitrite-N g−1 d.w. soil (equivalent to 172 μM nitrite in soil solution) for the reduction of nitrite to NO in KBE. Under nitrate and nitrite-limiting conditions, 62–76% and 93–97% of the consumed NO-N were recovered as N2O-N in KBE and PBE, respectively. Gassing of nitrate plus nitrite-depretsu KBE with increasing mixing ratios of NO2 resulted in increasing rates of NO2 uptake and presumably in the formation of low concentrations of nitrite and nitrate. This NO2 uptake resulted in increasing rates of both NO production and NO consumption indicating that nitrite or nitrate was limiting for both reactions.  相似文献   

19.
Hypobaric conditions and treatments with ethylene and the ethylene analogue propylene were used to investigate effects of oxygen and elhylene on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity and ethylene production of apples ( Malus sylveslris Mill. cv. Golden Delicious). Prcclimacteric apples were stored in air at 6.6 kPa (reduced pressure); 6.6 kPa ventilated with pure O2; 6.6 kPa ventilated with 2600 μl 1−1 C2H4; and in air at 101.3 kPa (atmospheric pressure) for 4 months at 4°C. No ACC synthase activity was detectable in apples stored at 6.6 kPa, whereas ACC synthase activity was induced in apples stored at 6.6 kPa and ventilated with either O2 or C2H4. In a further experiment, preclimacteric apples were stored for 14 days either in air at 20 kPa or at 20 kPa ventilated with pure O2. Both treatments were supplied with 58 500 μl 1−1 propylene from day 0 to day 9 or from day 9 to day 12. Ethylene production of apples treated with propylene from day 0 to day 9 increased earlier than ethylene production of untreated apples. Propylene treatment from day 9 to day 12 did not stimulate ethylene production. Ethylene and propylene induced and stimulated extractable ACC synthase activity and ACC formation of apples. Oxygen enhanced this effect. The results also suggest inhibition of in vivo ACC synthase activity by propylene.  相似文献   

20.
Abstract NO production and consumption rates as well as N2O accumulation rates were measured in a loamy cambisol which was incubated under different conditions (i.e. soil moisture content, addition of nitrogen fertilizer and/or glucose, aerobic or anaerobic gas phase). Inhibition of nitrification with acetylene allowed us to distinguish between nitrification and denitrification as sources of NO and N2O. Under aerobic conditions untreated soil showed very low release of NO and N2O but high consumption of NO. Fertilization with NH4+ or urea stimulated both NO and N2O production by nitrification. Addition of glucose at high soil moisture contents led to increased N2 and N2O production by denitrification, but not to increased NO production rates. Anaerobic conditions, however, stimulated both NO and N2O production by denitrification. The production of NO and N2O was further stimulated at low moisture contents and after addition of glucose or NO3. Anaerobic consumption of NO by denitrification followed Michaelis-Menten kinetics and was stimulated by addition of glucose and NO3. Aerobic consumption of NO followed first-order kinetics up to mixing ratios of at least 14 ppmv NO, was inhibited by autoclaving but not by acetylene, and decreased with increasing soil moisture content. The high NO-consumption activity and the effects of soil moisture on the apparent rates of anaerobic and aerobic production and consumption of NO suggest that diffusional constraints have an important influence on the release of NO, and may be a reason for the different behaviour of NO release vs N2O release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号