首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   

2.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

3.
Using isolated liver mitochondria we show that low concentrations of TBT (0.5 microM) cause the release of mitochondrial cytochrome c, in the presence of Ca(2+). This is reflected in a rapid loss of membrane potential (DeltaPsi(m)), and a large-amplitude swelling characteristic of mitochondrial permeability transition (MPT). Despite this, the inclusion of cyclosporin A could not prevent the release of cytochrome c. Further, in the absence of Ca(2+), low concentrations of TBT (0.5 microM) resulted in a slow sub-maximal shift of DeltaPsi(m), not characteristic of MPT, which was still paralleled by a release of cytochrome c. Further experiments showed that the loss of DeltaPsi(m) in the absence of Ca(2+) was due to a combination of inhibition of respiration and a direct uncoupling effect on the respiratory chain. Under these conditions, rapid swelling of mitochondria could be demonstrated, due to chloride exchange over the inner mitochondrial membrane. Taken together these data suggest that TBT can induce the release of cytochrome c in intact cells by at least two mechanisms. The first and critical mechanism is initiated immediately the mitochondria sense the presence of TBT and involves a slow loss of DeltaPsi(m) and induction of swelling, which allows release of cytochrome c in a relatively non-specific manner and independently from a rise in [Ca(2+)](i). The second mechanism involves the induction of formal MPT as intracellular [Ca(2+)](i) increases. These data help to explain previous observations in intact lymphocytes demonstrating TBT-induced release of mitochondrial cytochrome c in the absence of a rise in [Ca(2+)](i) (Stridh, H., Gigliotti, D., Orrenius, S., and Cotgreave, I. A. (1999) Biochem. Biophys. Res. Commun. 266, 460-465).  相似文献   

4.
Thapsigargin directly induces the mitochondrial permeability transition.   总被引:5,自引:0,他引:5  
High concentrations of thapsigargin (TG) have been used to study the process of necrotic cell death, which involves mitochondria in the cell rapidly undergoing the mitochondrial permeability transition (MPT). We therefore investigated the effects of TG on MPT in isolated liver and heart mitochondria. Using a matrix swelling assay in combination with a novel enzymatic method based on inner membrane permeability to citrate synthase substrates, TG induced MPT in a concentration-dependent manner, independent of extramitochondrial [Ca2+] and inhibitable by cyclosporin A. Evidence from alamethicin-permeabilized mitochondria suggests that TG induces MPT by causing Ca2+ release from mitochondrial matrix Ca2+-binding sites. These findings suggest that the MPT-inducing effect of TG may contribute to its pro-necrotic and pro-apoptotic effects in various cell types.  相似文献   

5.
Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.  相似文献   

6.
Disulfiram (Ds), a clinically employed alcohol deterrent of the thiuram disulfide (TD) class of compounds, is known to cause hepatitis and neuropathies. Although this drug has been shown to inhibit different thiol-containing enzymes, the actual mechanism of Ds toxicity is not clear. We have previously demonstrated that Ds impairs the permeability of inner mitochondrial membrane (IMM) [Arch. Biochem. Biophys. 356 (1998) 46]. In this report, the effect of Ds and its structural analogue thiram (Th) on mitochondrial functions was studied in detail. We found that mitochondria metabolize TDs in a NAD(P)H- and GSH-dependent manner. At the concentration above characteristic threshold, TDs induced irreversible oxidation of NAD(P)H and glutathione (GSH) pools, collapse of transmembrane potential, and inhibition of oxidative phosphorylation. The presence of Ca(2+) and exhaustion of mitochondrial glutathione (GSH+GSSG) decreased the threshold concentration of TDs. Swelling of the mitochondria and leakage of non-transported fluorescent dye BCECF from the matrix indicated that TDs induced the mitochondrial permeability transition (MPT). Mitochondrial permeabilization by TDs involves two, apparently distinct mechanisms. In the presence of Ca(2+), TDs produced cylosporin A-sensitive swelling of mitochondria, which was inhibited by ADP and accelerated by carboxyatractyloside (CATR) and phosphate. In contrast, the swelling produced by TDs in the absence of Ca(2+) was not sensitive to cyclosporin A (CsA), ADP and CATR but was inhibited by phosphate. Titration with N-ethylmaleimide revealed that these two mechanisms involve different SH-groups and probably different transport proteins on the IMM. Our findings indicate that at pharmacologically relevant concentrations TDs may cause an irreversible mitochondrial injury as a result of induction of the MPT.  相似文献   

7.
The possible inhibition by [corrected] ursolic acid (UA) of [corrected] mitochondrial permeability transition (MPT) in mouse liver was investigated to identify the mechanisms underlying the hepatoprotective effect of UA. The effect of UA on liver MPT induced by Ca2+ was assessed by measuring changes in mitochondrial volume, mitochondrial membrane potential (MMP), release of matrix Ca2+, and transfer of cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) from the intermembrane space to the cytoplasm. The results showed that obvious mitochondrial swelling, loss of MMP, and release of matrix Ca2+ occurred after the addition of 50 microM Ca2+. However, preincubation with 20, 50 or 100 microg ml(-1) UA significantly blocked the above changes. Addition of 100 microg ml(-1) UA inhibited on mitochondrial swelling by 73.2% after 5 min, while the MMP dissipating and Ca2+ releasing were, respectively, suppressed by 59.3% and 54.1% after 3 min. In addition, Western blot analysis showed Cyt c and AIF transferred from mitochondrial pellet to the supernatant after the addition of 50 microM Ca2+, but the process was significantly inhibited by various concentrations of UA. The results suggest that the mechanisms underlying the hepatoprotection of UA may be related to its direct inhibitory action on MPT.  相似文献   

8.
Opening of permeability transition (PT) pores in the mitochondrial inner membrane causes the mitochondrial permeability transition (MPT) and leads to mitochondrial swelling, membrane depolarization, and release of intramitochondrial solutes. Here, our aim was to develop high-throughput assays using a fluorescence plate reader to screen potential inducers and blockers of the MPT. Isolated rat liver mitochondria (0.5 mg/ml) were incubated in multiwell plates with tetramethylrhodamine methyl ester (TMRM, 1 microM), a potential-indicating fluorophore, and Fluo-5N (1 microM), a low-affinity Ca(2+) indicator. Incubation led to mitochondrial polarization, as indicated by uncoupler-sensitive quenching of the red TMRM fluorescence. CaCl(2) (100 microM) addition led to ruthenium red-sensitive mitochondrial Ca(2+) uptake, as indicated by green Fluo-5N fluorescence. After Ca(2+) accumulation, mitochondria depolarized, released Ca(2+) into the medium, and began to swell. This swelling was monitored as a decrease in light absorbance at 620 nm. Swelling, depolarization, and Ca(2+) release were prevented by cyclosporin A (1 microM), confirming that these events represented the MPT. Measurements of Ca(2+), mitochondrial membrane potential, and swelling could be made independently from the same wells without cross interference, and all three signals could be read from every well of a 48-well plate in about 1 min. In other experiments, mitochondria were ester-loaded with carboxydichlorofluorescein (carboxy-DCF) during the isolation procedure. Release of carboxy-DCF after PT pore opening led to an unquenching of green carboxy-DCF fluorescence occurring simultaneously with swelling. By combining measurements of carboxy-DCF release, Ca(2+) uptake, membrane potential, and swelling, MPT inducers and blockers can be distinguished from uncouplers, respiratory inhibitors, and blockers of Ca(2+) uptake. This high-throughput multiwell assay is amenable for screening panels of compounds for their ability to promote or block the MPT.  相似文献   

9.
3-Nitropropionic acid (3NP) functions as an irreversible inhibitor of succinic acid dehydrogenase (complex II) and induces neuronal disorders in rats similar to those in patients with Huntington's disease. It is well known that L-carnitine (LC), a carrier of long chain fatty acid into the mitochondrial matrix, attenuates the neuronal degeneration in 3NP-treated rats. From these findings it has been suggested that 3NP induces certain neuronal cell death through mitochondrial dysfunction and that LC preserves the neurons against the dysfunction of mitochondria caused by 3NP. However, the detailed mechanism of cell death by 3NP and the protective actions of LC against the mitochondrial dysfunction have not been fully elucidated yet. Thus, we studied the molecular mechanism of the effects of 3NP and LC on isolated rat liver mitochondria. 3NP inhibited succinate respiration and the decreased respiratory control ratio of isolated mitochondria without affecting oxidative phosphorylation. 3NP induced a membrane permeability transition (MPT), which plays an important role in the mechanism of apoptotic cell death. 3NP stimulated Ca2+ release from mitochondria, decreased membrane potential, induced mitochondrial swelling, and stimulated cytochrome c release from mitochondria. 3NP-induced swelling was suppressed by bovine serum albumin, inhibitors of phospholipase A(2) and by an inhibitor of classic MPT, cyclosporin A. Furthermore, LC suppressed the changes brought about by 3NP in mitochondrial functions in the presence of ATP. These results suggest that MPT underlies the mechanism of 3NP-induced cell death, and that LC attenuates mitochondrial MPT by decreasing long chain fatty acids generated by phospholipase A(2).  相似文献   

10.
Mitochondria from different regions of the brain were prepared, and the activation of the mitochondrial permeability transition (MPT) by calcium was investigated by monitoring the associated mitochondrial swelling. In general, the properties of the MPT in brain mitochondria were found to be qualitatively similar to those observed in liver and heart mitochondria. Thus, swelling was inhibited by adenine nucleotides (AdNs) and low pH (<7.0), whereas thiol reagents and alkalosis facilitated swelling. Cyclosporin A and its nonimmunosuppressive analogue N-methyl-Val-4-cyclosporin A (PKF 220-384) both inhibited swelling and prevented the translocation of cyclophilin D from the matrix to the membranes of cortical mitochondria. However, the calcium sensitivity of the MPT differed in mitochondria from three brain regions (hippocampus > cortex > cerebellum) and is correlated with the susceptibility of these regions to ischemic damage. Depleting mitochondria of AdNs by treatment with pyrophosphate ions sensitized the MPT to [Ca2+] and abolished regional differences, implying regional differences in mitochondrial AdN content. This was confirmed by measurements showing significant differences in AdN content among regions (cerebellum > cortex > hippocampus). Our data add to recent evidence that the MPT may be involved in neuronal death.  相似文献   

11.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

12.
The effects of tamoxifen (TAM) were studied on the mitochondrial permeability transition (MPT) induced by the prooxidant tert-butyl hydroperoxide (t-BuOOH) or the thiol cross-linker phenylarsine oxide (PhAsO), in the presence of Ca2+, in order to clarify the mechanisms involved in the MPT inhibition by this drug. The combination of Ca2+ with t-BuOOH or PhAsO induces mitochondrial swelling and depolarization of membrane potential (deltapsi). These events are inhibited by cyclosporine A (CyA), suggesting the inhibition of the MPT. The pre-incubation of mitochondria with TAM also prevents those events and induces a time-dependent reversal of deltapsi depolarization following MPT induction, similarly to CyA. Moreover, TAM inhibits the Ca2+ release and the oxidation of NAD(P)H and protein thiol (-SH) groups promoted by t-BuOOH plus Ca2+. On the other hand, the MPT induced by PhAsO plus Ca2+ does not induce -SH groups oxidation, supporting the notion that MPT induction by this compound is not mediated by the oxidation of specific membrane proteins groups. However, TAM also inhibits the PhAsO induced MPT, suggesting that this drug may inhibit this phenomenon by inhibiting PhAsO binding to -SH vicinal groups, implicated in the MPT induction. These data indicate that the MPT inhibition by TAM may be related to its antioxidant capacity in preventing the oxidation of NAD(P)H and -SH groups or by blocking these groups, since the oxidation of these groups increases the sensitivity of mitochondria to the MPT induction. Additionally, they suggest an MPT-independent pathway for TAM-induced apoptosis and a potential ER-independent mechanism for the effectiveness of this drug in the cancer therapy and prevention.  相似文献   

13.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

14.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

15.
Iron and iron complexes stimulate lipid peroxidation and formation of malondialdehyde (MDA). We have studied the effects of Fe2+ and ascorbate on mitochondrial permeability transition induced by phosphate and Ca2+. Iron is necessary for detectable MDA formation, but only Ca2+ and phosphate are necessary for the induction of membrane potential loss (Deltapsi) and Ca2+ release. Keeping the iron at a constant concentration and varying the Ca2+ level changed the mitochondrial Ca2+ retention times, but not the amount of MDA formation. The antioxidant butylated hydroxytoluene at low concentrations prevented MDA formation, but not mitochondrial Ca2+ release. Preincubation of mitochondria with Fe2+ decreased Ca2+ retention time in a concentration-dependent manner and facilitated Ca2+-stimulated MDA accumulation. Thus, Ca2+ phosphate-induced mitochondrial permeability transition (MPT) can be separated mechanistically from MDA accumulation. Lipid peroxidation products do not appear to participate in the initial phase of the permeability transition, but sensitize mitochondria toward MPT.  相似文献   

16.
Au(DPPE)+2 (bis[1,2-bis(diphenylphosphino)ethane] gold(I] is an organo-gold antineoplastic agent that has anti-tumor activity in a variety of in vitro cell lines and in vivo rodent tumor models. Preliminary studies suggested that this compound represented a novel class of inhibitors of mitochondrial function. The purpose of this study was, therefore, to determine the mechanism of mitochondrial dysfunction induced by Au(DPPE)+2. Au(DPPE)+2 induced a rapid, dose-related collapse of the inner mitochondrial membrane potential (EC50 = 28.0 microM) that was not potentiated by Ca2+ preloading. Au(DPPE)+2-induced dissipation of mitochondrial membrane potential was accompanied by an efflux of Ca2+ from mitochondria upon exposure to Au(DPPE)+2. Ca2+ efflux in these experiments was via a reversal of the Ca2+ uniporter as efflux could be inhibited with ruthenium red. Au(DPPE)+2 did not increase the permeability of mitochondria to oxalacetate, indicating that the collapse of membrane potential may not be a result of gross increased inner membrane permeability. However, Au(DPPE)+2 may mediate an increased permeability of the inner membrane to cations and protons. Au(DPPE)+2 caused passive swelling in potassium acetate buffer in the absence of valinomycin, suggesting Au(DPPE)+2 facilitated the exchange of H+ and K+. Ca2+ cycling was not extensive and did not contribute to the decrease in membrane potential. These data suggest that one possible mechanism of Au(DPPE+2-induced uncoupling of mitochondrial oxidative phosphorylation is via increased permeability of the inner mitochondrial membrane to cations. The disruption of mitochondrial function may be a key process leading to hepatocyte cell injury by this drug.  相似文献   

17.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

18.
Mitochondria play an important role in apoptosis by generating reactive oxygen species (ROS) and inducing membrane permeability transition (MPT). Recent studies on alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid, suggest that these agents (LAs) inhibit apoptosis of cells by means of their antioxidant activity. On the other hand, LAs also stimulate Ca2+-dependent mitochondrial MPT and induce apoptosis of certain cells. Thus, the role of LAs in apoptotic cell death remains obscure. We investigated the mechanism of LA-induced MPT of mitochondria. Biochemical analysis revealed, in the presence of Ca2+, inorganic phosphate and succinate, LA induced uncoupling of oxidative phosphorylation, stimulated oxidation of pyridine nucleotides and enhanced Ca2+-induced MPT, as characterized by decrease in Ca2+ loading, ROS generation, oxidation of thiol groups of adenine nucleotide translocator, membrane depolarization, swelling, and cytochrome c release in an incubation time and concentration dependent manner. LA also stimulated hydroxyl radical-induced MPT in a alpha-tocopherol-inhibitable manner. Cyclosporine A, a potent inhibitor of mitochondrial MPT, inhibited all these events induced by LA. These results indicate that, under certain conditions, LA stimulates Ca2+-induced MPT through the decrease in loading capacity of Ca2+ and that MPT is involved in LA-induced apoptotic cell death. Since fairly high doses of LA have been used as a dietary supplement, the possible occurrence of such side effects, including mitochondrial dysfunction and induction of apoptosis in normal tissues, should be studied.  相似文献   

19.
The effects of 4-hydroxytamoxifen (OHTAM), the major active metabolite of the antiestrogen tamoxifen used in the breast cancer therapy, were studied on the mitochondrial permeability transition (MPT) and bioenergetic functions of mitochondria to evaluate the mechanisms underlying the cell death and toxic effects. The MPT was induced in vitro by incubating rat liver mitochondria with 1 mM inorganic phosphate plus Ca2+ and with tert-butyl hydroperoxide. OHTAM provides protection against the Ca2+-induced mitochondrial swelling, depolarization of the mitochondrial membrane potential (deltapsi), loss of electrophoretic Ca2+ uptake capacity and uncoupling of respiration, similarly to cyclosporine A. The concentrations of OHTAM used do not significantly affect deltapsi, respiratory control and adenosine diphosphate/oxygen ratios and induce repolarization and Ca2+ re-uptake, suggesting that such inhibitory effects of OHTAM were due to the prevention of the MPT induction and not due to the inhibition of the mitochondrial Ca2+ uniporter. Since the MPT induction has been linked to an oxidized shift in the mitochondrial redox state and/or increase in the generation of reactive oxygen species, the MPT prevention by OHTAM may be related to its high antioxidant capacity.  相似文献   

20.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号