首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bone marrow (BM) is home to at least two stem cells, hematopoietic (HSC) and mesenchymal. Hematopoiesis is partly regulated through neurokinin-1 (NK-1) and NK-2 belonging to the family of G-protein/7-transmembrane receptors. NK-1 and NK-2 show preference for the neurotransmitters, substance P (SP) and neurokinin-A (NK-A), respectively. Hematopoietic suppression mediated by NK-A could be partly explained through the production of TGF-beta1 and MIP-1alpha. This study further characterizes mechanisms by which NK-A inhibits progenitor cell proliferation. The study addresses the hypothesis that p53 is a mediator of NK-A activation and this occurs partly through p53-mediated expression of NK-2. The studies first analyzed two consensus sequences for p53 in supershift assays. Reporter gene assays with NK-2 gene constructs and p53 expressing wild-type and mutant vectors, combined with cell proliferation assays, show NK-A activating p53 to inhibit the proliferation of K562 progenitors. These effects were reversed by hematopoietic stimulators, GM-CSF and SP. Verification studies with human CD34+/CD38- and CD34+/CD38+ BM progenitors show similar mechanisms with the expression of p21. This study reports on p53 as central to NK-A-NK-2 interaction in cell cycle quiescence of hematopoietic progenitors. These effects are reversed by at least two hematopoietic stimulators, SP and GM-CSF, with concomitant downregulation of p53.  相似文献   

2.
In adults, hematopoiesis occurs in bone marrow (BM) through a complex process with differentiation of hematopoietic stem cells (HSCs) to immune and blood cells. Human HSCs and their progenitors express CD34. Methods on hematopoietic regulation are presented to show the effects of the chemokine, stromal-derived growth factor (SDF)-1α and the neuropeptide, substance P (SP). SDF-1α production in BM stroma causes interactions with HSCs, thereby retaining the HSCs in regions close to the endosteum, at low oxygen. Small changes in SDF-1α levels stimulate HSC functions through direct and indirect mechanisms. The indirect method occurs by SP production, which stimulates CD34+ cells, supported by ligand-binding studies, long-term culture-initiating cell assays for HSC functions, and clonogenic assays for myeloid progenitors. These methods can be applied to study other hematopoietic regulators.  相似文献   

3.
Neurokinin 1 (NK-1) is a member of seven transmembrane G protein-coupled receptors. NK-1 interacts with peptides belonging to the tachykinin family and showed preference for substance P (SP). NK-1 is induced in bone marrow (BM) stroma. NK-1-SP interactions could lead to changes in the functions of lymphohematopoietic stem cell (LHSC). This report describes the cloning and characterization of a cDNA clone isolated after screening of three cDNA libraries with an NK-1-specific probe. Based on its expression, the cDNA clone was designated hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Computational analyses predicted that HGFIN is transmembrane with the carboxyl terminal extracellular. Proteomic studies with purified HGFIN and SP showed noncovalent interactions. HGFIN-SP interactions were supported by transient expression of HGFIN in CHO cells. Transient expression of HGFIN in unstimulated BM fibroblasts led to the induction of endogenous NK-1. Since NK-1 expression in BM fibroblasts requires cell stimulation, these studies suggest that there might be intracellular crosstalk between NK-1 and HGFIN. Northern analyses with total RNA from different BM cell subsets showed that HGFIN was preferentially expressed in differentiated cells. This suggests that HGFIN might be involved in the maturation of LHSC. HGFIN was detected in several other tissues, but not in brain where NK-1 is constitutively expressed.  相似文献   

4.
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.  相似文献   

5.
The last decades have seen no significant progress in extending the survival of lung cancer patients and there is an urgent need to improve current therapies. The substance P (SP)/neurokinin-1 receptor (NK-1R) system plays an important role in the development of cancer: SP and NK-1R antagonists respectively induce cell proliferation and inhibition in human cancer cell lines. No study of the involvement of this system in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells has been carried out in depth. Here, we demonstrate the involvement of the SP/NK-1R system in human H-69 (SCLC) and COR-L23 (NSCLC) cell lines: (1) they express isoforms of the NK-1R and mRNA for the NK-1R; (2) they overexpress the tachykinin 1 gene; (3) the NK-1R is involved in their viability; (4) SP induces their proliferation; (5) NK-1R antagonists (Aprepitant (Emend), L-733,060, L-732,138) inhibit the growth of both cell lines in a concentration-dependent manner; (6) the specific antitumor action of these antagonists against such cells occurs through the NK-1R; and (7) lung cancer cell death is due to apoptosis. We also demonstrate the presence of NK-1Rs and SP in all the human SCLC and NSCLC samples studied. Our findings indicate that the NK-1R may be a promising new target in the treatment of lung cancer and that NK-1R antagonists could be new candidate antitumor drugs in the treatment of SCLC and NSCLC.  相似文献   

6.
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.  相似文献   

7.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   

8.
Tachykinins such as SP (substance P) may be involved in the progression of gastric adenocarcinoma through binding to NK-1 receptor. However, the existence and relationship between SP and gastric cancer progression and differentiation remained unknown. We have studied the NK-1 receptor in human gastric cancer tissue and MKN45 cell line and found SP-containing nerve fibres in human gastric cancer and found that the amounts of SP-positive nerves were related to gastric cancer differentiation. SP could promote proliferation, adhesion, migration and invasion of MKN45 cells in vitro. In addition, the intracellular calcium level of MKN45 cells was elevated after SP stimulation, and administration of CRACs (calcium release-activated calcium channels) inhibitor SKF-96365 could partially abolish these effects induced by SP. These results demonstrated that NK-1 receptor and SP-containing nerves existed in human gastric cancer; SP positive nerves may play an important role in human gastric cancer progression, and calcium is critically significant among SP-induced biological effects.  相似文献   

9.
The NK-1.1(-) mouse: a model to study differentiation of murine NK cells   总被引:19,自引:0,他引:19  
The NK-1.1(-) mouse was constructed by weekly injections of monoclonal anti-NK-1.1 antibody from birth through adulthood. Spleen cells from these mice have decreased NK-1.1+ cells and null (Thy-1- and B220-) cells. Their splenic NK activity to YAC targets was low and was not enhanced by IFN-alpha or IFN-beta. Bone marrow (BM) of these NK-1.1(-) mice have normal precursors to NK cells: 1) NK activity could be generated from NK-1.1(-) BM cells cultured in rIL 2 for 5 to 6 days. These cultured BM cells expressed Qa-5, Thy-1, AsGm-1, and NK-1.1 antigens. The precursor cells of these BM cytotoxic cells are NK-1.1-; 2) transfer of BM cells from the NK-1.1(-) mice reconstituted the NK activity of irradiated, NK-depleted recipients. Lymphokine-activated killer cells could also be generated from spleens of these NK-1.1(-) mice. Therefore, the NK-1.1(-) mice were specifically depleted of mature cytotoxic NK cells, but not the NK-1.1- precursors of NK cells. This mouse model is valuable to study ontogeny and physiologic relevance of NK cells.  相似文献   

10.
We have previously shown that a fetal liver-derived epithelial cell clone, FHC-4D2, could support hematopoiesis in vitro through its colony-stimulating factor (CSF) activities in a short-term culture. In this study, since FHC-4D2 cells were found capable of maintaining hematopoietic progenitors in the coculture for a long time, we examined how FHC-4D2 could exert hematopoietic supporting activity in a long-term culture by coculturing adult bone marrow (BM) cells or fetal liver (FL) cells on a monolayer of FHC-4D2 cells. This clone could maintain the colony-forming unit of granulocytes and macrophages (CFU-GM) of BM for ≥ 12 weeks under the coculture condition, but the fibroblastic cell clone from the fetal liver, FHC-4A3, could not support the survival of CFU-GM, even for 1 week. In addition to BM CFU-GM, the FHC-4D2 clone also supported the survival of FL CFU-GM, burst-forming unit of erythroid cells (BFUe), and colony-forming unit of mixed progenitors (CFU-Mix) for longer than 4 weeks. When BM cells were separated by a membrane filter from the FHC-4D2 cells in the coculture, the comparable number of CFU-GM was maintained at day 3, but virtually no hematopoietic progenitors were detected at the end of the first week. CFU-GM were present in both nonadherent and adherent cells to the FHC-4D2 cells at day 3 of the coculture, but at day 7, the adherent population contained greater number of CFU-GM. CFU-GM derived from the adherent cells formed larger colonies and contained more bipotential CFU-GM than the nonadherent population. When BM cells from mice given 5-fluorouracil were cocultured with FHC-4D2 cells under the limiting dilution condition, interleukin-3 (IL-3)-responsive CFU-GM were induced from immature hematopoietic progenitor cells that were otherwise unresponsive to IL-3. From these data we conclude that the FHC-4D2 clone could generate and maintain IL-3-responsive hematopoietic progenitors via close contact and that, in the fetal liver, the contact between hepatocytes and hematopoietic cells may be critically important in inducing the differentiation of resting, IL-3-unresponsive immature hematopoietic cells into CFU-GM (progenitors responsive to IL-3) and in triggering the self-renewal of CFU-GM. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Adipose tissue is now considered as an endocrine organ implicated in energy regulation, inflammation and immune response, and as a source of multipotent cells with a broad range of differentiation capacities. Some of these cells are of a mesenchymal type which can -- like their bone marrow (BM) counterpart -- support hematopoiesis, since in a previous study we were able to reconstitute lethally irradiated mice by cells isolated from adipose tissue. In the present study, we established that cells derived from the stroma-vascular fraction of human subcutaneous fat pads support the complete differentiation of hematopoietic progenitors into myeloid and B lymphoid cells. However, these cells are unable to maintain the survival and self-renewal of hematopoietic stem cells. These features, similar to those of BM adipocytes, are the opposite of those of other cell types derived from mesenchymal progenitors such as BM myofibroblasts or osteoblasts. Because it is abundant and accessible, adipose tissue could be a convenient source of cells for the short-term reconstitution of hematopoiesis in man.  相似文献   

12.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of proinflammatory cytokines from colonic epithelial cells. SP also stimulates cell proliferation, a critical event in tissue healing during chronic colitis, via transactivation of the epidermal growth factor (EGF) receptor (EGFR) and activation of mitogen-activated protein kinase (MAPK). Here we examined the mechanism by which SP induces EGFR and MAPK activation. We used non-transformed human NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) as well as untransfected U373 MG cells expressing high levels of endogenous NK-1R. Exposure of both cell lines to SP (10(-7) m) stimulated EGFR activation (1 min) followed by extracellular signal-regulated protein kinase (ERK1/2) activation (2-5 min). SP-induced ERK1/2 activation was blocked by pretreatment with the metalloproteinase inhibitor Batimastat/GM6001, the EGFR phosphorylation inhibitor AG1478, and the tumor necrosis factor-alpha-converting enzyme (TACE) inhibitor TAPI-1. Pretreatment with antibodies against potential EGFR ligands suggested that transforming growth factor-alpha (TGFalpha), but not the other EGFR ligands EGF, heparin-binding EGF, or amphiregulin, mediates SP-induced EGFR transactivation. SP stimulated TGFalpha release into the extracellular space that was measurable within 2 min, and this release was inhibited by metalloproteinase inhibitors and the TACE inhibitor TAPI-1. SP also induced MAPK-mediated cell proliferation that was inhibited by TACE, matrix metalloproteinase (MMP), EGFR, and MEK1 inhibitors. Thus, in human colonocytes, NK-1R-induced EGFR and MAPK activation and cell proliferation involve matrix metalloproteinases (most likely TACE) and the release of TGFalpha. These signaling mechanisms may be involved in the protective effects of NK-1R in chronic colitis.  相似文献   

13.
We find that substance P (SP) and insulin-like growth factor-1 (IGF-1) demonstrate a synergistic effect on the stimulation of rabbit corneal epithelial migration in an organ culture. The addition of either SP or IGF-1 alone did not affect epithelial migration, while the combination of SP and IGF-1 stimulated epithelial migration in a dose-dependent fashion. The synergistic effects of SP and IGF-1 on corneal epithelial migration were nulled by the addition of a SP antagonist or enkephalinase. Among neurotransmitters (vasoactive intestinal peptide, calcitonin gene-related peptide, acethylcholine chloride, norepinephrine, serotonin) or tachykinins (neurokinin A, neurokinin B, kassinin, eledoisin, physalaemin), only SP demonstrated a synergistic effect with IGF-1 on cellular migration. In contrast, the combination of SP and IGF-1 did not affect the incorporation of 3H-thymidine into corneal epithelial cells. The attachment of the corneal epithelial cells to fibronectin, collagen type IV, and laminin matrices increased after treatment of the cells with SP and IGF-1, but SP or IGF-1 by themselves did not affect the attachment of the cells to these extracellular matrix proteins. An identical synergistic effect on corneal epithelial migration was observed when an NK-1 receptor agonist was used in place of SP, suggesting the synergistic effect of SP and IGF-1 might be mediated through the NK-1 receptor system. These results suggest that the maintenance of the normal integrity of the corneal epithelium might be regulated by both humoral and neural factors. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Erythropoietin (Epo) is essential for the terminal proliferation and differentiation of erythroid progenitor cells. Fibronectin is an important part of the erythroid niche, but its precise role in erythropoiesis is unknown. By culturing fetal liver erythroid progenitors, we show that fibronectin and Epo regulate erythroid proliferation in temporally distinct steps: an early Epo-dependent phase is followed by a fibronectin-dependent phase. In each phase, Epo and fibronectin promote expansion by preventing apoptosis partly through bcl-xL. We show that alpha(4), alpha(5), and beta(1) are the principal integrins expressed on erythroid progenitors; their down-regulation during erythropoiesis parallels the loss of cell adhesion to fibronectin. Culturing erythroid progenitors on recombinant fibronectin fragments revealed that only substrates that engage alpha(4)beta(1)-integrin support normal proliferation. Collectively, these data suggest a two-phase model for growth factor and extracellular matrix regulation of erythropoiesis, with an early Epo-dependent, integrin-independent phase followed by an Epo-independent, alpha(4)beta(1)-integrin-dependent phase.  相似文献   

15.
Transgenic mice homogeneously expressing enhanced green fluorescence protein (EGFP) in primitive hematopoietic cells and all blood cell progeny, including erythrocytes and platelets, have not been reported. Given previous data indicating H2Kb promoter activity in murine hematopoietic stem cells (HSCs), bone marrow (BM), and lymphocytes, an H2Kb enhancer/promoter EGFP construct was used to generate transgenic mice. These mice demonstrated pancellular EGFP expression in both primitive BM Sca-1+Lin-Kit+ cells and side population (SP) cells. Additionally, all peripheral blood leukocytes subsets, erythrocytes, and platelets uniformly expressed EGFP strongly. Competitive BM transplantation assays established that transgenic H2Kb-EGFP HSCs had activity equivalent to wildtype HSCs in their ability to reconstitute hematopoiesis in lethally irradiated mice. In addition, immunohistochemistry revealed EGFP transgene expression in all tissues examined. This transgenic strain should be a useful reagent for both murine hematopoiesis studies and functional studies of specific cell types from particular tissues.  相似文献   

16.
Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1(low) cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1(high)) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1(low) cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1(low) early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles.  相似文献   

17.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors.  相似文献   

18.
Residue Leu10 of substance P (SP) is critical for NK-1 receptor recognition and agonist activity. In order to probe the bioactive conformation of this residue, cis- and trans-3-substituted prolinoleucines were introduced in position 10 of SP. The substituted SP analogues were tested for their affinity to human NK-1 receptor specific binding sites (NK-1M and NK-1m) and their potency to stimulate adenylate cyclase and phospholipase C in CHO cells transfected with the human NK-1 receptor. [trans-3-prolinoleucine10]SP retained affinity and potency similar to SP whereas [cis-3-prolinoleucine10]SP shows dramatic loss of affinity and potency. To analyze the structural implications of these biological results, the conformational preferences of the SP analogues were analyzed by NMR spectroscopy and minimum-energy conformers of Ac-cis-3-prolinoleucine-NHMe, Ac-trans-3-prolinoleucine-NHMe and model dipeptides were generated by molecular mechanics calculations. From NMR and modeling studies it can be proposed that residue Leu10 of SP adopts a gauche(+) conformation around the chi1 angle and a trans conformation around the chi2 angle in the bioactive conformation. Together with previously published results, our data indicate that the C-terminal SP tripeptide should preferentially adopt an extended conformation or a PPII helical structure when bound to the receptor.  相似文献   

19.
20.
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号