首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate   总被引:11,自引:0,他引:11  
During embryonic development, organs arise along the gut tube as a series of buds in a stereotyped anterior-posterior (A-P) pattern. Using chick-quail chimeras and in vitro tissue recombination, we studied the interactions governing the induction and maintenance of endodermal organ identify focusing on the pancreas. Though several permissive signals in pancreatic development have been previously identified, here we provide evidence that lateral plate mesoderm sends instructive signals to the endoderm, signals that induce expression of the pancreatic genes Pdx1, p48, Nkx6.1, glucagon, and insulin. Moreover, this instructive signal directs cells to form ectopic insulin-positive islet-like clusters in endoderm that would otherwise form more rostral organs. Once generated, endocrine cells no longer require interaction with mesoderm, but nonendocrine cells continue to require permissive signals from the mesoderm. Stimulation of activin, BMP, or retinoic acid signaling is sufficient to induce Pdx1 expression in endoderm anterior to the pancreas. Lateral plate mesoderm appears to pattern the endoderm in a posterior-dominant fashion as first noted in the patterning of the neural tube at the same embryonic stage. These findings argue for a central role of the mesoderm in coordinating the A-P pattern of all three primary germ layers.  相似文献   

5.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

6.
Induction is a process in which the developmental pathway of one cell is controlled by signals emitted from another. Mesoderm induction is the first inductive interaction in theXenopus enbryo and probably occurs in all vertebrates. It is a very important event as it is implicated in the regulation of morphogenesis. Nieuwkoop first demonstrated the importance of vegetal endoderm in inducing the mesoderm. Slack and co-workers incorporated the information obtained from experimental embryology in a “three signal” model for mesoderm induction in amphibians (signals arising from ventral vegetal hemisphere, dorsal vegetal hemisphere and the organizer). More recent research has resulted in the detection of mesoderm inducing factors which are members of FGF and TGF--β families. Activin, a member of the TGF-β family, has been shown to induce differential gene expression and cell differentiation in a concentration-dependent manner giving credence to the theory of morphogen gradients. Study of mesoderm induction in the chick embryo is much more difficult due to several reasons. Novel experimental approaches, however, have been used which point to the role of activin and FGF in chick mesoderm induction. The demonstration of mesoderm inducing activity of activin and FGF in other groups of vertebrates, particularly the chick embryo brings out the possibility of a universal mechanism of mesoderm induction being operative in all the vertebrates.  相似文献   

7.
Fibroblast growth factor (FGF) is established as an initiator of signaling events critical for neurogenesis and mesoderm formation during early Xenopus embryogenesis. However, less is known about the role FGF signaling plays in endoderm specification. Here, we show for the first time that endoderm-specific genes are induced when FGF signaling is blocked in animal cap explants. This block of FGF signaling is also responsible for a significant enhancement of endodermal gene expression in animal cap explants that are injected with a dominant-negative BMP-4 receptor (DNBR) RNA or treated with activin, however, neural and mesoderm gene expression is diminished. Consistent with these results, the injection of dominant-negative FGF receptor (DNFR) RNA expands endodermal cell fate boundaries while FGF treatment dramatically reduces endoderm in whole embryos. Taken together, these results indicate that inhibition of FGF signaling promotes endoderm formation, whereas the presence of active FGF signaling is necessary for neurogenesis/mesoderm formation.  相似文献   

8.
Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
12.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation, there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells, which resemble primitive ectoderm, can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM, this differentiation is responsive to TGF-beta family members in a concentration-dependent manner, with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm, including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1, -beta 2, or -beta 3, acid FGF, or basic FGF is added individually to CDM. In vivo, at day 6.5 of mouse development, activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together, our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.  相似文献   

13.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

14.
15.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

16.
J B Green  H V New  J C Smith 《Cell》1992,71(5):731-739
The potent mesoderm-inducing factors activin and FGF are present as maternally synthesized proteins in embryos of X. laevis. We show that activin can act on explanted blastomeres to induce at least five different cell states ranging from posterolateral mesoderm to dorsoanterior organizer mesoderm. Each state is induced in a narrow dose range bounded by sharp thresholds. By contrast, FGF induces only posterolateral markers and does so over relatively broad dose ranges. FGF can modulate the actions of activin, potentiating them and broadening the threshold-bounded dose windows. Our results indicate that orthogonal gradients of activin and FGF would be sufficient to specify the main elements of the body plan.  相似文献   

17.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.  相似文献   

18.
19.
fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos   总被引:2,自引:0,他引:2  
Fibroblast growth factors (Fgfs) play important roles in the pattern formation of early vertebrate embryos. We have identified a zebrafish ortholog of human FGF17, named fgf17b. The first phase of fgf17b expression occurs in the blastodermal margin of late blastulae and in the embryonic shield of early gastrulae. The second phase starts after the onset of segmentation, mainly in the presomitic mesoderm and newly formed somites. Injection of fgf17b mRNA into one-cell embryos induces expression of the mesodermal marker no tail (ntl) and rescues ntl expression suppressed by overexpression of lefty1 (lft1). Overexpression of fgf17b dorsalizes zebrafish gastrulae by enhancing expression of chordin (chd), which is an antagonist of the ventralizing signals BMPs. In addition, overexpression of fgf17b posteriorizes the neuroectoderm. Simultaneous knockdown of fgf17b and fgf8 with antisense morpholinos results in reduction of chd and ntl. Knockdown of fgf17b can alleviate inhibitory effect of ectopic expression of fgf3 on otx1. These data together suggest that Fgf17b plays a role in early embryonic patterning. We also demonstrate that fgf17b and fgf8 have stronger mesoderm inducting activity than fgf3, whereas fgf17b and fgf3 have stronger activity in posteriorizing the neuroectoderm than fgf8. Like fgf8, activation of fgf17b expression depends on Nodal signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号