首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new genus, Bobgunnia, is established in tribe Swartzieae for the African species of Swartzia. Two new combinations are made: B. fistuloides and B. madagascariensis. The new genus has seeds, unlike the remainder of tribe Swartzieae but like the other tribes of Faboideae. The systematic position of Swartzieae is reevaluated.  相似文献   

2.
Classifications of Theaceae have usually placed the endangered monotypic genus Apterosperma in tribe Schimeae (x=18), whereas recent molecular phylogenetic evidence supports its transfer to tribe Theeae (x=15). Molecular data have not resolved the phylogenetic position of Apterosperma within Theeae. We investigated the chromosome number and karyotype of Apterosperma in the context of molecular and morphological phylogenetic evidence to provide further insight into the placement of Apterosperma within Theaceae. The chromosome number and karyotype was found to be 2n = 30 = 26m + 4sm, consistent with the transfer of Apterosperma to tribe Theeae. When the chromosome data were incorporated into a data set of 46 other nonmolecular characters, Apterosperma was placed as the first-diverging lineage within the clade comprising tribe Theeae. This supports its placement based on molecular data. The low intrachromosomal asymmetry (type 1A) of Apterosperma, presumably ancestral for the family, is also consistent with this placement. Character optimization strongly supports a base chromosome number of x=15 for tribe Theeae. Because of variable and sometimes conflicting chromosome count reports of species in tribes Schimeae and Stewartieae, the base chromosome number of Theaceae could be either x=15 or 17.  相似文献   

3.
Recent collections and the type specimen of Marasmiellus juniperinus, the type species of the genus, were examined. Phylogenetic placement, based on ribosomal large subunit (LSU) and internally transcribed spacer (ITS) sequences, is within the lentinuloid clade, nested among Gymnopus taxa. This placement dictates genus name usage and phylogenetic position of other putative species of Marasmiellus. The mating system is tetrapolar.  相似文献   

4.
Golovinomyces is a strictly herb-parasitic genus in the Erysiphaceae. Host–parasite co-speciation was reported recently between the genus Golovinomyces and Asteraceae from molecular phylogenetic analyses. The Asteraceae originated in South America and latterly expanded their geographic distribution into the Northern Hemisphere. If the co-speciation between Golovinomyces and Asteraceae originated in South America, the geographic origin of Golovinomyces could be assumed to be South America. To address this question, Golovinomyces species from hosts of the tribe Mutisieae, an asteraceous tribe endemic to South America, were collected and the ITS and 28S rDNA regions sequenced. Results indicate that Oidium mutisiae and Golovinomyces leuceriae isolated from the Mutisieae do not belong at the base of the Golovinomyces tree. Instead, they are situated separately within two different clades of Golovinomyces isolates from the Northern Hemisphere. Therefore, the tribe Mutisieae is not the most early host of Golovinomyces. Present results suggest that Golovinomyces originated in the Northern Hemisphere, and not in South America. The new species Oidium reginae for the previous O. mutisiae on Mutisia decurrens is proposed.  相似文献   

5.
Plastid sequences of the atpB-rbcL spacer and rbcL gene itself were used to evaluate their respective potential in reconstructing the phylogeny of 15 taxa from the tribe Rubieae (Rubiaceae). From our previous analyses using the atpB-rbcL spacer, the 15 selected taxa represent most of the variability of the tribe. Since this group is considered to be relatively recent (Upper Tertiary), it should allow the study of early dynamics of nucleotide substitutions in recent divergences. The results show that the spacer and rbcL inferred phylogenies are not totally congruent; the spacer trees are more similar to interpretations of morphological data. A comparative analysis of the pattern of nucleotide substitution of these two sequences in the Rubieae shows that (1) the overall rate of substitution is similar in the spacer and in rbcL, and the rate of synonymous substitution in rbcL is much higher; (2) the level of homoplasy is higher in rbcL than in the spacer matrix which shows a higher phylogenetic structure; and (3) the pattern of transition and transversion substitutions is different in the two sequences, and is not linear in rbcL. As a result of these observations, we suggest that (1) the spacer is evolving relatively slowly because of unsuspected, and phylogenetically important; selective constraints on its sequence; and (2) in the rbcL sequence, many sites, free of constraint, are changing at high rate, and some of these sites seem to have undergone multiple substitutions even in this recent tribe. This could explain the high level of homoplasy found in Rubieae rbcL sequences. Correspondence to: J.-F. Manen  相似文献   

6.
Tribe Fabeae consists of five genera, Lathyrus (160 spp.), Lens (4–6 spp.), Pisum (2–3 spp.), Vavilovia (monotypic), and Vicia (160 spp.), and shows a diversity in stylar features. At least six different stylar types are known in the tribe. In order to reclassify the tribe at the rank of genus, we tried to discover apomorphies in stylar features using a molecular phylogenetic study. We surveyed internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA of representative species, selected from each group having different types of styles in the tribe. We paid particular attention in sampling to members of Vicia section Vicilla, as stylar features are heterogeneous within this section. Consequently, our sample set included 15 species of section Vicilla, 23 species of other Fabeae, and two species of Trifolieae, which were used as a sister group of Fabeae. Based on our analysis, we found that a laterally compressed style and an abaxially tufted hairy style would be advanced against a dorsiventrally compressed style and an evenly hairy style, respectively, in genus Vicia. The species group, which shares the latter apomorphy, is composed of 56 species and was dispersed into 11 sections of two subgenera in the recent system of genus Vicia. We consider future revision of Fabeae should treat this species group as a single higher taxon.  相似文献   

7.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

8.
Mitochondrial DNA polymorphism was employed to assess cytoplasmic diversity among cytoypes of the genus Cichorium and related genera of the tribe Lactuceae (Asteraceae). Hybridization patterns of total DNA using six restriction enzymes and five heterologous mtDNA probes were examined. From estimates of mtDNA diversity, Cichorium spinosum appeared as an ecotype of C. intybus rather than a separate species. Interspecific mtDNA polymorphism in the genus Cichorium was higher than that observed in Cicerbita Crepis, Lactuca and Tragopogon. Molecular data seemed to indicate that Catananche is very distant from the other genera examined. Intergeneric comparisons allowed the clustering of Cicerbita, Lactuca and Cichorium, genera which belong to different subtribes. However, further molecular investigations on a larger number of genera are needed to clarify the relationships among genera within and between subtribes of the tribe Lactuceae.  相似文献   

9.
The nucleotide sequences of nuclear gene EF-1α were determined for 49 species of Lasiocampidae from Eurasia and Africa. Based on these data, the phylogeny of the family was reconstructed using the minimum evolution, maximum parsimony, maximum likelihood, and Bayesian inference methods. The molecular genetic research confirms the monophyly of Malacosominae which is treated as a separate subfamily. The genus Euthrix appears to be paraphyletic. The group of genera similar to Arguda, previously united with Odonestis in the tribe Odonestini, proved to be a separate lineage; contrary to the earlier assumption, the genera do not seem to be related. On the other hand, the genera Argonestis and Odonestis were found to be closely related and therefore were placed in the same tribe. The position of the genus Macrothylacia remains obscure. The genus Stoermeriana de Fr. et Witt is also para- or polyphyletic and consists of several independent lineages whose status remains to be determined. The new classification supports synonymization of Pinarinae with Lasiocampinae. The rank of subfamily is not supported for the Neotropical Macromphaliinae, which is downgraded to a tribe, Macromphaliini stat. n., within Poecilocampinae. The genus Hypopacha, previously considered within Macromphaliinae, is transferred to Poecilocampini; the close relation between Poecilocampini and Macromphaliini is additionally supported by the presence of a member of Poecilocampini in the New World. A new tribe, Argudini Zolotuhin trib. n., is established.  相似文献   

10.
Pollen grains of the tribe Pavetteae (Rubiaceae, subfamily Ixoroideae) are examined using LM and SEM. Grains are 3‐ or 4‐colporate and (semi‐) tectate (in one Versteegia species atectate). Sexine patterns vary between perforate, microreticulate, reticulate, rugulate and striato‐reticulate. Supratectal elements are sometimes present. The variation in pollen morphology in the Pavetteae allows to recognize seven pollen types, the distribution of which is useful to evaluate generic delimitations and relationships within the tribe. Pollen characters corroborate the close relationships between the genera Coleactina, Dictyandra and Leptactina and between Homollea, Homolliella and Paracephaelis. All the genera of the tribe proved to be stenopalynous (the species examined possess the same pollen type), except Pavetta, Rutidea, Versteegia and Tarenna which are eurypalynous. In the huge genus Pavetta the existing infrageneric classification is supported pollen morphologically. Pollen morphology further indicates that the genus Tarenna is badly delimited and strongly in need of a revision. The small genus Versteegia is in need of further taxonomic and palynological study to understand the pollen morphological variation encountered here. At a higher rank, pollen morphology also does not contradict the recent division of the Pavetteae in the Ixoreae (a stenopalynous tribe with presumably primitive pollen) and the Pavetteae sensu stricto (eurypalynous).  相似文献   

11.
The mycoheterotrophic Burmanniaceae are one of the three families currently recognized in the order Dioscoreales. Phylogenetic inference using nucleotide sequences of the nuclear 18S rDNA region and the mitochondrial nad1 b-c intron revealed two well-supported, major lineages within the family, corresponding to the two tribes recognized in the family: Burmannieae and Thismieae. All data supported a strong relationship between Thismieae and Tacca (Dioscoreaceae) making both Burmanniaceae and Dioscoreaceae polyphyletic. The three largest Burmanniaceae genera, Burmannia, Gymnosiphon, and Thismia, are paraphyletic. The splitting of Burmanniaceae into Burmannieae and Thismieae indicates two independent origins of mycoheterotrophy and correlated loss of chlorophyll in Dioscoreales. In the genus Burmannia, in which many species still contain chlorophyll, the achlorophyllous species are nested in between the autotrophic species, suggesting many independent changes from autotrophy to heterotrophy or vice versa. A Bayesian relative rates test on the 18S rDNA data showed considerable variation in substitution rates among Burmanniaceae. The substitution rates in all Thismieae and many Burmannieae are significantly faster than in Dioscoreaceae, but there seems to be no correlation between rate increases and the loss of photosynthesis.  相似文献   

12.
13.
The nuclear ITS region of 19 species of Alnus was amplified and sequenced. The inferred molecular phylogeny shows that all species of the genus Alnus form a monophyletic group close to Betula and that the fundamental dichotomy within the genus lies between the subgenera Alnaster and Gymnothyrsus, sensu Murai (1964). The subgenus Alnaster appears to be basal in the genus, based on archaism of morphological features, and branching close to the root of the trees due to low ITS divergence from genus Betula. The monophyly of the section Clethropsis is not supported by the present data: Alnus nepalensis is positioned in the subgenus Gymnothyrsus, away from A. nitida and A. maritima. Surprisingly, A. formosana sect. Japonicae is closely tied to A. maritima sect. Clethropsis, with which it shares few morphological traits, and is separate from A. japonica sect. Japonicae with which it shares many traits. An increase in substitution rate is noted in the group comprising A. formosana, A. maritima and A. nitida relative to the rest of the genus, which appears to have had, on the average, a very slow mutation rate. Alnus glutinosa, the designated type for the genus, appears to be representative of the genus both for morphological characters and evolutionary rate. North-East Asia is comforted in its position of origin of the genus since not only does it have the highest number of species and representatives in all deep branching lineages, there are also fewer transcontinental migrations when a North-East Asian ancestor is postulated than when a North American ancestor is postulated.  相似文献   

14.
白花蛇舌草是我国重要的传统中药,主要是指茜草科(Rubiaceae)钮扣草族(Spermacoceae)的Oldenlandia diffusa,但伞房花耳草(O.corymbosa)在民间或中药市场也常被作为替代品使用。由于长期以来Hedyotis-Oldenlandia复合群的分类存在许多争论,因此白花蛇舌草有时被归入非洲耳草属(Oldenlandia L.),有时又作为广义耳草属(Hedyotis L.s.l.)的成员。为了澄清白花蛇舌草命名上的问题,基于7个叶绿体片段和2个核基因片段对钮扣草族85个分类群进行了系统发育分析。结果表明,白花蛇舌草不属于以上两属中的任何一属,而应为蛇舌草属[Scleromitrion(WightArn.)Meisn.]的成员。依此结果,对5种植物进行了新组合,并提供了白花蛇舌草和伞房花耳草的形态学比较,以有助于在实践中更好地进行区分。  相似文献   

15.
A cladistic analysis of the genusAnisopappus (Asteraceae: Inuleae) has been undertaken. A hypothesis of species interrelationships in the genus is presented for the first time. The analysis also includedArctotis (Arctoteae), used as outgroup, and five additional genera from theInuleae: Geigeria, Calostephane, Asteriscus, Buphthalmum, Pulicaria, andInula. It is concluded thatAnisopappus is a monophyletic group situated at the base of the tribe, diagnosed by, e.g., their obtuse stylar sweeping-hairs. The species with acute sweeping-hairs were found to be derived within the genus. Problems concerning species delimitation, biogeography and character evolution in the genus are briefly discussed.  相似文献   

16.
Populations of Thismia tentaculata (Burmanniaceae tribe Thismieae) are described and illustrated from Tai Mo Shan in Hong Kong, southern China. This represents the first report of the genus and tribe from continental China.  相似文献   

17.
Phylogenetic relationships within the mite Family Phytoseiidae are little known. The presently accepted classification is based on the opinion of specialists, but not on cladistics analysis. The present paper focuses on the tribe Euseiini, containing 271 species, three subtribes and 10 genera. It aims to determine phylogenetic relationships between these taxa and test their monophyly. Molecular analysis combining six markers has been carried out for taxa we succeeded in collecting. Morphological, biogeographic and ecological data have been analysed to determine how these factors can explain the evolutionary relationships emphasized on the phylogenetic tree. Those analyses have been carried out for the taxa available for the molecular study, but also for all species of the tribe. The tribe Euseiini and the two subtribes considered are monophyletic (at least considering the available taxa), supporting the present hypothesis on Phytoseiidae classification. However, the genus Iphiseius seems to not be valid and its unique species is included in the genus Euseius. Clades that were observed within the genus Euseius do not match with recent work on species groups within this genus. It seems that some morphological features such as an insemination apparatus shape and seta length on the dorsal shield constitute some elements explaining the clusters within the genus Euseius. Biogeographic and ecological data analysis led us to hypothesize a west Gondwanian origin of the tribe Euseiini (Africa and Neotropical areas) on Rosids plants (especially of the Orders Malpiphiales and Fabales: subclass Fabidae). Further analyses are still required to (i) take into account more taxa (especially rare ones and species from the Ethiopian part), (ii) to consider more accurate morphological features through more powerful microscopic apparatus, and (iii) to associate a phylogenetic and evolutionary scenario to life traits (pollen feeders).  相似文献   

18.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

19.
A total of 56 morphological characters were analyzed for 53 cirrospiline species that represent all of the 17 described genera of the tribe. The other taxa of the Eulophinae included in the analysis were six species of six representative genera in the tribe Eulophini, a species of Elasmus (the only genus comprising the tribe Elasmini), and a species of Trichospilus (unplaced). Trichospilus and two of the six genera of Eulophini examined were placed within Cirrospilini. Monophyly of Cirrospilini (when these two genera of Eulophini and Trichospilus are included) and of the cirrospiline genera for which more than one species were examined was supported, but the relationships between the genera were poorly resolved. An exception was Cirrospilus, the largest genus in the Cirrospilini, monophyly of which was not supported to any extent.  相似文献   

20.
The genus Oligoryzomys, distributed from southern South America to southern North America, is the most diverse of the tribe Oryzomyini of sigmodontine rodents. Even when 22 species are currently recognized, species boundaries are unclear for several forms. The species Oligoryzomys destructor is one of the least studied species of the genus and is the one with the largest distribution along the Andes (from southern Colombia to northern Bolivia). The species was described without the selection of a holotype and indication of its type locality. In addition, several taxa are regarded as synonyms of O. destructor. These facts are relevant because previous analysis of DNA sequences has shown that O. destructor represents a species complex. Herein, in addition to test the phylogenetic position of O. destructor within the genus Oligoryzomys, we assess patterns of morphological and molecular variation of O. destructor and its associated nominal forms aimed to assess the boundaries of the species. As part of the study, we selected neotypes for Hesperomys destructor and H. melanostoma. At the light of our results, we recognized O. destructor as a species with two subspecies, O. d. destructor and O. d. spodiurus. Also, we discuss the role of Andean rivers, and their different permeability, as allopatric barriers molding the structure of O. destructor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号