首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

2.
The effect of the method of heart catheterization on the measurement of cerebral blood flow (CBF) with radioactive microspheres was evaluated during various experimental procedures in male Sprague-Dawley rats. Catheters were inserted into the left ventricle via the right carotid or right subclavian artery or directly into the left atrium for microsphere injections. CBF was measured in cerebral cortical and subcortical tissues under control anesthetized (70 % N2O, 30 % O2), hypoxic or hypercapnic test conditions. Under control conditions, CBF was similar in the right vs the left cerebral hemisphere in subclavian artery and atrial catheterized rats but was greater in the left vs the right cortex in carotid catheterized animals (p<.05). During hypoxia and hypercapnia CBF increased equally in both cerebral hemispheres in atrial catheterized rats. The increase in CBF was significantly attenuated in the cerebral hemisphere ipsilateral to carotid catheterization during hypoxia and hypercapnia, although the percentage increase in flow was similar in both hemispheres. The results indicate the limitations of measuring regional CBF changes under experimental test conditions in rats with a ligated carotid artery and suggest that atrial catheterization is the method of choice when comparable changes in CBF are desired in both cerebral hemispheres.  相似文献   

3.
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.  相似文献   

4.
Fluorescence histochemistry discloses that the carotid rete mirabile in the giraffe has a poor sympathetic innervation. In contrast, the efferent artery of the rete (internal carotid artery) and the cerebral arteries show moderate sympathetic innervation. A certain degree of regional variability was noted in which the rostral arteries (anterior and middle cerebral) receive more sympathetic nerves than the caudal (posterior communicating and basilar) arteries. The sympathetic nerves on the giraffe cerebral vessels may constitute part of a host of mechanisms by which regional blood flow to the brain is regulated. Conversely, the paucity of sympathetic innervation of the carotid rete mirabile may indicate that this structure does not play an active role in vasoconstrictor responses during postural changes of the head.  相似文献   

5.
In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF); however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG) via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine–xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.  相似文献   

6.
Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28+/-12% (mean+/-SE) decrease in CMRO2, a 72+/-50% increase in CBF, and a 56+/-19% decrease in OEF compared with baseline (P<0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.  相似文献   

7.
Blood flow in the circle of Willis (CoW) is modelled using the 1-D equations of pressure and flow wave propagation in compliant vessels. The model starts at the left ventricle and includes the largest arteries that supply the CoW. Based on published physiological data, it is able to capture the main features of pulse wave propagation along the aorta, at the brachiocephalic bifurcation and throughout the cerebral arteries. The collateral ability of the complete CoW and its most frequent anatomical variations is studied in normal conditions and after occlusion of a carotid or vertebral artery (VA). Our results suggest that the system does not require collateral pathways through the communicating arteries to adequately perfuse the brain of normal subjects. The communicating arteries become important in cases of missing or occluded vessels, the anterior communicating artery (ACoA) being a more critical collateral pathway than the posterior communicating arteries (PCoAs) if an internal carotid artery (ICA) is occluded. Occlusions of the VAs proved to be far less critical than occlusions of the ICAs. The worst scenario in terms of reduction in the mean cerebral outflows is a CoW without the first segment of an anterior cerebral artery combined with an occlusion of the contralateral ICA. Furthermore, in patients without any severe occlusion of a carotid or VA, the direction of flow measured at the communicating arteries corresponds to the side of the CoW with an absent or occluded artery. Finally, we study the effect of partial occlusions of the communicating arteries on the cerebral flows, which again confirms that the ACoA is a more important collateral pathway than the PCoAs if an ICA is occluded.  相似文献   

8.
目的:观察凝闭双侧椎动脉与夹闭双侧颈总动脉之间的不同时间间隔对Pulsinelli四血管闭塞法全脑缺血模型的影响、以及在凝闭单侧椎动脉的基础上夹闭双侧颈总动脉后的脑缺血的特点。方法:84只Wistar大鼠.随机分为以下4组:对照组、双侧椎动脉凝闭组、全脑缺血组、单侧椎动脉凝闭+双侧颈总动脉夹闭组。全脑缺血组中,根据凝闭双侧椎动脉与夹闭双侧颈总动脉之间的时间间隔不同,又分为24h间隔、48h间隔和72h间隔3个亚组。观察大鼠脑缺血过程中的反应包括瞳孔散大、对光反射等情况,脑缺血后恢复翻正反射所需要的时间、以及动物的一般状况,并应用硫堇染色法观察海马CA1区锥体神经元迟发性死亡的情况:结果:全脑缺血72h间隔亚组的大鼠,脑缺血过程中的反应、脑缺血后的一般状况和锥体神经元迟发性死亡程度均明显重于全脑缺血24h间隔亚组及48h间隔亚组,但24h间隔亚组与48h间隔亚组之间无显著差异一单侧椎动脉凝闭+双侧颈总动脉夹闭组大鼠的凝闭侧瞳孔散大、对光反射消失、海马CA1区神经元大量死亡;而未凝闭侧未见上述相关变化。结论:凝闭双侧椎动脉本身也具有脑缺血预处理样作用,对其后48h内夹闭双侧颈总动脉所致的严重脑缺血具有一定程度的保护作用;大鼠椎动脉对脑干及海马的血液供应均存在明显的同侧优势效应,  相似文献   

9.
Stroke is among the most frequent causes of death and adult disability, especially in highly developed countries. However, treatment options to date are very limited. To meet the need for novel therapeutic approaches, experimental stroke research frequently employs rodent models of focal cerebral ischaemia. Most researchers use permanent or transient occlusion of the middle cerebral artery (MCA) in mice or rats.Proximal occlusion of the middle cerebral artery (MCA) via the intraluminal suture technique (so called filament or suture model) is probably the most frequently used model in experimental stroke research. The intraluminal MCAO model offers the advantage of inducing reproducible transient or permanent ischaemia of the MCA territory in a relatively non-invasive manner. Intraluminal approaches interrupt the blood flow of the entire territory of this artery. Filament occlusion thus arrests flow proximal to the lenticulo-striate arteries, which supply the basal ganglia. Filament occlusion of the MCA results in reproducible lesions in the cortex and striatum and can be either permanent or transient. In contrast, models inducing distal (to the branching of the lenticulo-striate arteries) MCA occlusion typically spare the striatum and primarily involve the neocortex. In addition these models do require craniectomy. In the model demonstrated in this article, a silicon coated filament is introduced into the common carotid artery and advanced along the internal carotid artery into the Circle of Willis, where it blocks the origin of the middle cerebral artery. In patients, occlusions of the middle cerebral artery are among the most common causes of ischaemic stroke. Since varying ischemic intervals can be chosen freely in this model depending on the time point of reperfusion, ischaemic lesions with varying degrees of severity can be produced. Reperfusion by removal of the occluding filament at least partially models the restoration of blood flow after spontaneous or therapeutic (tPA) lysis of a thromboembolic clot in humans.In this video we will present the basic technique as well as the major pitfalls and confounders which may limit the predictive value of this model.  相似文献   

10.
We studied the contractile properties of isolated cerebral arteries in near term fetal lambs, as well as the magnitudes and rates of relaxation during moderate hypoxia. Paired 5-mm segments of basilar, middle cerebral, posterior communicating, and common carotid arteries were suspended in a temperature controlled bath and isometric tension measured during 122 mM K(+)-induced contractions. In one vessel of each pair hypoxia was imposed by switching the bubbling gas from 95% O2 + 5% CO2 to 95% N2 + 5% CO2 4 minutes into a K+ contraction, thus lowering the bath PO2 to approximately 15 Torr. After 15 min exposure to hypoxia the middle cerebral artery had relaxed 61%, the posterior communicating 46%, the basilar 44%, and the common carotid only 18% compared to normoxic controls. All cerebral arteries relaxed relatively rapidly (relaxation rates of 42-45 x 10(-4) s-1), whereas the common carotid relaxed slowly (20 x 10(-4) sec-1). The data indicate that these cerebral arteries play an important role in regulating blood flow responses during hypoxemia in intact fetuses.  相似文献   

11.
We tested the hypothesis that intracarotid estrogen infusion increases cerebral blood flow (CBF) in a concentration-dependent manner and direct application of estrogen on pial arterioles yields estrogen receptor-mediated vasodilation. Rabbits of both genders were infused with estrogen via a branch of the carotid artery. Estrogen doses of 20 or 0.05 microg. ml(-1). min(-1) were used to achieve supraphysiological or physiological plasma estrogen levels, respectively. CBF and cerebral vascular resistance were determined at baseline, during the infusion, and 60-min postinfusion, and effects on pial diameter were assessed via a cranial window. Pial arteriolar response to estrogen alone and to estrogen after administration of tamoxifen (10(-7)), an antiestrogen drug that binds to both known estrogen receptor subtypes, was tested. No gender differences were observed; therefore, data were combined for both males and females. Systemic estrogen infusion did not increase regional CBF. Estradiol dilated pial arteries only at concentrations ranging from 10(-4)-10(-7) M (P < or = 0.05). Pretreatment with tamoxifen alone had no effect on arteriolar diameter but inhibited estrogen-induced vasodilation (P < 0.001). Our data suggest that estrogen does not increase CBF under steady-state conditions in rabbits. In the pial circulation, topically applied estradiol at micromolar concentrations dilates vessels. The onset is rapid and dependent on estrogen receptor activation.  相似文献   

12.
Cell death after cerebral ischemia is mediated by the accumulation of excitatory amino acids, calcium influx into cells and the generation of free radicals. The aim of this study was to evaluate changes in energy-related metabolites in the striatum of gerbils subjected to focal cerebral ischemia after pretreatment withGinkgo biloba extract (EGb761), a well-known antioxidant, and FK506, a calcium-dependent phosphatase calcineurin inhibitor. Ischemia was induced by occlusion of the right common carotid artery and the right middle cerebral artery for 60 min. A microdialysis probe was inserted into the right striatum to monitor extracellular glucose, lactate and pyruvate levels. This study showed decreases in glucose (10% of the baseline), pyruvate (20% of the baseline) and lactate (60% of the baseline), and a 5-fold increase in the lactate to pyruvate ratio during ischemia in the control group. Both EGb761 treatment and the combination (EGb761 and FK506) therapy significantly preserved glucose (50% of the baseline) and pyruvate (60% of the baseline) levels during ischemia. The marked increase in the lactate to pyruvate ratio was not observed in the combination group. These results suggest that preservation of cellular energy metabolism during cerebral ischemia and after restoration with reperfusion may contribute to the neuroprotective effects of EGb761 and FK506.  相似文献   

13.
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both common carotid arteries resulted in a time-dependent decrease in the 3-kinase activity but not the 5-phosphatase activity. Approximately 50% of the 3-kinase activity in the cerebral cortex of the right MCA territory disappeared after 60 min of ischemia, and the enzyme activity was not restored during reperfusion. Reperfusion for 24 hr after a 60 min ischemic insult almost abolished the 3-kinase activity but the 5-phosphatase activity remained unaltered. These results suggest that the Ins(1,4,5)P3 3-kinase is one of the target enzymes of cerebral ischemia. The changes in Ins(1,4,5)P3 metabolism may be associated with the changes in intracellular Ca2+ homeostasis that underlies the pathophysiology of neuronal cell death.  相似文献   

14.
We hypothesize that early ischemic preconditioning (IPC) can afford protection against focal brief and prolonged cerebral ischemia with subsequent reperfusion as well as permanent brain ischemia in rats by amelioration of regional cerebral blood flow. Adult male Wistar rats (n=97) were subjected to transient (30 and 60 minutes) and permanent middle cerebral artery (MCA) occlusion. IPC protocol consisted of two episodes of 5-min common carotid artery occlusion + 5-min reperfusion prior to test ischemia either followed by 48 hours of reperfusion or not. Triphenyltetrazolium chloride and Evans blue were used for delineation of infarct size and anatomical area at risk (comprises ischemic penumbra and ischemic core), respectively. Blood flow in the MCA vascular bed was measured with use of Doppler ultrasound. The IPC resulted in significant infarct size limitation in both transient and permanent MCA occlusion. Importantly, IPC caused significant reduction of area at risk after 30 min of focal ischemia as compared to controls [med(min-max) 11.4% (3.59-2 0.35%) vs. 2.47% (0.8-9.31%), p = 0.018] but it failed to influence area at risk after 5 min of ischemia [med(min-max) 7.61% (6.32-10.87%) vs. 8.2% (4.87-9.65%), p > 0.05]. No differences in blood flow were found between IPC and control groups using Doppler ultrasound. This is suggestive of the fact that IPC does not really influence blood flow in the large cerebral arteries such as MCA but it might have some effect on smaller arteries. It seems that, along with well established cytoprotective effects of IPC, IPC-mediated reduction of area at risk by means of improvement in local cerebral blood flow may contribute to infarct size limitation after focal transient and permanent brain ischemia in rats.  相似文献   

15.
Lin JY  Chung SY  Lin MC  Cheng FC 《Life sciences》2002,71(7):803-811
Previous studies have demonstrated that magnesium sulfate has cytoprotective properties for treating experimental rat brain injuries. The aim of this study is to evaluate changes in energy-related metabolites and glutamate in the cortex of gerbils subjected to focal cerebral ischemia with the pretreatment of magnesium sulfate. The focal cerebral ischemia was produced by the occlusion of the right common carotid artery and the right middle cerebral artery for 60 mins. A significant decrease in infarct size was found in the magnesium sulfate treated group when compared to the controls. Two microdialysis probes were inserted bilaterally into the cortex to monitor extracellular glucose, lactate, pyruvate and glutamate during cerebral ischemia and reperfusion periods. The present study showed a dynamic decrease of glucose (10% of the baseline), pyruvate (15% of the baseline), and an increase of lactate (200% of the baseline) and glutamate (1400% of the baseline) on the ipsilateral side during ischemia in the control group. Magnesium sulfate significantly preserved glucose (up to 50% of the baseline) and pyruvate (70% of the baseline) levels in the ipsilateral side during ischemia. There was significant attenuation in the elevation of glutamate and lactate (500% and 150% of the baseline, respectively) when treatments of magnesium sulfate were administered. No significant influence on these neurochemicals in the contralateral side was observed in either group. These results suggest that both the preservation of cellular energy metabolism, and the attenuation of glutamate release during cerebral ischemia and after restoration of reperfusion may contribute to the neuroprotective effects of magnesium sulfate.  相似文献   

16.
Estrogen appears to enhance cerebral blood flow (CBF). An association between CBF and physiologically altered hormonal levels due to menstrual cycle, menopause, or exogenous manipulations such as ovariectomy or hormone replacement therapy has been demonstrated. The purpose of this study was to determine the association between ovarian stimulation and CBF in vivo by measuring blood flow in the internal carotid artery (ICA) after pituitary suppression and during controlled ovarian stimulation in women undergoing in vitro fertilization treatment cycles. ICA volume flows were measured by angle-independent dual-beam ultrasound Doppler in 12 women undergoing controlled ovarian stimulation. Measurements were performed after pituitary/ovarian suppression, in the late follicular phase, and at midluteal phase. Blood flow in the ICA increased by 22.2% and 32% in the late follicular and midluteal phases compared with the respective values obtained during ovarian suppression (P < 0.0005 and P < 0.0001, respectively). There was a significant correlation between increments in estrogen levels and increments in CBF when the late follicular phase was compared with the ovarian suppression period (r = 0.8, P < 0.001). Mean blood flow velocity significantly increased (by 15.7% and 16.9%, respectively) and cerebral vascular resistance significantly decreased (by 17.6% and 26.5%) during the late follicular and midluteal phases compared with respective measures during ovarian suppression. There was a significant correlation between an increase in estrogen levels and a decrease in cerebral vascular resistance when the late follicular phase was compared with the ovarian suppression period (r = -0.6, P < 0.05). These changes imply sex hormone-associated intracranial vasodilation leading to increased CBF during controlled ovarian stimulation.  相似文献   

17.
Tsai SK  Lin MJ  Liao PH  Yang CY  Lin SM  Liu SM  Lin RH  Chih CL  Huang SS 《Life sciences》2006,78(23):2758-2762
The effects of caffeic acid phenethyl ester (CAPE), an antioxidant derived from propolis, on the infarct volume elicited by focal cerebral ischemia were studied on Long-Evans rats. Cerebral infarction was induced by microsurgical procedures with ligation of the right middle cerebral artery (MCA) and clipping of bilateral common carotid arteries (CCA) for 60 min. The rats were sacrificed 24 h later and serial brain slices of 2 mm thickness were taken and stained for the measurement of infarct area. CAPE was administered intravenously 15 min before MCA occlusion. Pretreatment of CAPE (0.1, 1 and 10 microg/kg) significantly reduced the total infarct volume from 169.6 +/- 14.5 mm3 (control) to 61.0 +/- 24.1 mm3 (0.1 microg/kg CAPE), 47.4 +/- 9.1 mm3 (1 microg/kg CAPE), and 42.4 +/- 8.7 mm3 (10 microg/kg CAPE), respectively. Plasma nitric oxide (NO) content was significantly increased in rats subjected to focal cerebral ischemia. It is concluded that CAPE possesses neuroprotective properties in focal cerebral ischemia injury in rats possibly through its antioxidant effect and/or via the upregulation of NO production.  相似文献   

18.
By means of Falck's and Koelle's methods adrenergic and cholinergic structures were studied in the arteries in the cerebral basis of blue rock pigeons and of hens, white leghorn stock. The number of nerve transmitters was estimated per 1 mm2 of the vessel surface. The arteries of the basis in pigeon brain are surrounded with developed adrenergic and cholinergic nerve plexuses, their density decreasing in the following order: nasal branch of the internal carotid artery, middle, nasal cerebral and basilar arteries. A little more cholinergic transmitters occur on the middle cerebral artery, while on the other vessels, concentration of cholinergic and adrenergic fibers is equal. In hens, the density in the arrangement of adrenergic nerve transmitters is higher in the nasal branch of the internal carotid and in the nasal cerebral arteries than in the basilar artery. At the same time, chromaffin cells forming numerous conglomerations in some places are found on the latter. In pigeons, the density of adrenergic fibers arrangement on the arteries of the cerebral basis is higher than in hens.  相似文献   

19.
目的探讨兔脑微栓塞模型CT灌注成像(CT perfusion imaging,CTPI)脑血流动力学的动态变化规律。方法 30只新西兰兔,随机分成两组,A组:假手术对照组5只,B组:微栓塞组25只。经颈外动脉向颈内动脉注入直径约0.5 mm的SiO2颗粒10枚,分别于栓塞后30 min、3 h、6 h、12 h及24 h行CTPI,24 h处死动物取脑组织行HE染色。根据HE染色结果将模型分为缺血组和梗死组,分别观察其脑血流量(cerebral blood flow,CBF)、脑血容积(cerebral blood volume,CBV)和平均通过时间(mean transit time,MTT)的动态变化规律。结果 A组CTPI及HE染色均未见明显异常。B组3只因实验意外死亡,1只因下肢静脉穿刺失败导致CTPI失败,21只行CTPI,其中18只灌注异常,3只未见明显异常。18只灌注异常的兔中,HE染色10只脑梗死,7只脑缺血,1只未见明显异常。30 min时7只缺血兔脑不同程度低灌注,表现为CBF降低,MTT延长,CBV无显著变化,3~6 h低灌注进一步加重,CBV值略降低,12 h低灌注不同程度恢复,24 h进一步恢复。30 min时10只梗死兔脑明显低灌注,表现为CBF及CBV显著降低,MTT显著延长,3只兔低灌注分别在3 h、6 h及12 h不同程度恢复,然后下一时间又迅速降低并随着时间延长进一步加剧,其余7只兔低灌注程度随时间延长逐渐加剧或在一定水平上波动。结论脑缺血3~6 h低灌注最明显,12~24 h低灌注不同程度恢复,而脑梗死随时间延长低灌注程度不断加重或一过性恢复后再次加重。脑缺血的特征是CBF和CBV的不匹配,缺血组织CBF显著降低,CBV无显著变化,而脑梗死则表现为这两个参数的一致性下降。  相似文献   

20.
The rete mirabile and cerebral arteries represent a multifunctional system. Age-associated morphological changes at the rete mirabile and major cerebral arteries were observed in pygmy goats. The most important arteries for cerebral circulation are the ramus rostralis and ramus caudalis of the maxillary artery. The persistence of the internal carotid artery ( = 80%) in newborn and adult goats is a quite new result. The thermoregulatory function of head fighting-mammals with a large frontal sinus and the mechanical function of the rete mirabile were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号