首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, in vivo data are presented that suggest a role for host recognition of erythrocyte band 3 in the control of malaria parasitaemia. The course of Plasmodium chabaudi chabaudi AS acute infection in CBA/Ca mice was suppressed or enhanced as a result of treatment on two occasions with enriched preparations of normal erythrocyte band 3 in adjuvant. Co-treatment with band 3 and a recombinant polypeptide encoding the C-terminal region of the P. c. chabaudi AS merozoite surface protein 1, which on its own had no clear effect on parasitaemia, appeared to modulate band 3-induced inhibition. Despite several-fold reductions in ascending parasitaemias in some band 3-immunized groups, there was a lack of obvious or unexpected anaemia prior to, or during infection, indicating a degree of specificity in the parasitaemia modifying response for infected rather than uninfected erythrocytes. These findings support a role for modified host recognition of erythrocyte band 3 in the partial immunity that transcends phenotypic and genotypic antigenic variation by malaria parasites.  相似文献   

2.
Rosetting is a property of many malaria parasite species that has been linked to virulence in the major species infecting humans, Plasmodium falciparum. Here, the basic properties of rosettes in the rodent malaria laboratory model, P. chabaudi, were studied with a view to future studies on the role of rosetting in malaria parasite virulence and transmission. Rosetting occurred in 14 out of the 15 P. chabaudi clones studied, varied consistently between clones, and ranged between 9 and 37% at full parasite maturity. Rosetting frequency markedly declined after the mouse reached peak parasitemia, possibly due to host immunity. Consistent with P. falciparum and P. vivax, rosettes in P. chabaudi were disrupted by treatment with trypsin and EDTA. However, P. chabaudi rosettes were insensitive to sulfated glycoconjugates (heparin, heparan sulfate and fucoidan). The molecular basis of rosetting in P. chabaudi is unknown at present, but the results suggest that the molecules involved may differ from those in human-infecting species.  相似文献   

3.
Reducing host carriage of transmission-stage malaria parasites (gametocytes) is expected to decrease the population-wide burden of malaria. Some malaria disease severity is attributed to the induction of the pro-inflammatory cytokines TNF-alpha and lymphotoxin-alpha (LT-alpha), and we are interested in whether anti-malaria interventions which ameliorate the symptoms induced by those cytokines may have the capacity to alter malaria transmission. As many functions of TNF-alpha and LT-alpha are exerted through TNF receptor 1 (TNFR1), we investigated the effect TNFR1 blockade exerted on parasite transmission using the rodent malaria Plasmodium chabaudi chabaudi. We found that blocking TNFR1 simultaneously increased gametocyte density and infectivity to mosquitoes, whilst reducing disease severity (weight loss). These transmission-enhancing and severity-reducing effects of TNFR1 blockade were independent of asexual parasite load and were observed for several P. c. chabaudi genotypes. These results suggest that the effects of candidate malaria interventions on infectivity should be examined alongside effects on disease severity so that the epidemiological consequences of such interventions can be evaluated.  相似文献   

4.
利用调节性T细胞消除的致死型夏氏疟原虫(Plasmodium chabaudi chabaudi AS,P.c chabaudi AS)感染鼠疟模型,探讨DBA/2小鼠对P.c chabaudi AS感染易感性的原因。DBA/2小鼠对P.c chabaudi AS易感,伴随原虫血症增加CD4+CD25+Foxp3+细胞数量明显增加,且以CD4+CD25+Foxp3hi增加更为明显。原虫血症达峰值时CD4+CD25+Foxp3hi细胞数量亦达到峰值。相比,Treg消除鼠的原虫出现时间和疟血症峰值时间均明显延迟,且在疟血症达峰值前(5~8 d)原虫血症水平明显低于对照组。与之相应,CD4+CD25+Foxp3hi细胞数量明显处于低水平。同时,Treg消除鼠生存期明显延长。由此提示,P.c chabaudi AS感染导致Foxp3表达增加,扩增的CD4+CD25+Foxp3hi细胞有利于疟原虫复制和逃避宿主免疫应答,进而影响疟疾感染的进程和最终结局。  相似文献   

5.
Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites.  相似文献   

6.
Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1 from the Plasmodium chabaudi chabaudi strain AS. These vectors, when used in a heterologous prime-boost regimen in BALB/c mice, are capable of inducing strong transgene-specific humoral and cellular immune responses. We show that this vaccination regimen is protective against a nonlethal P. chabaudi chabaudi strain AS blood-stage challenge, resulting in reduced peak parasitemias. The role of vaccine-induced, AMA1-specific Abs and T cells in mediating the antiparasite effect was investigated by in vivo depletion of CD4(+) T cells and adoptive-transfer studies into naive and immunodeficient mice. Depletion of CD4(+) T cells led to a loss of vaccine-induced protection. Adoptive-transfer studies confirmed that efficacy is mediated by both CD4(+) T cells and Abs functioning in the context of an intact immune system. Unlike previous studies, these results confirm that Ag-specific CD4(+) T cells, induced by a clinically relevant vaccine-delivery platform, can make a significant contribution to vaccine blood-stage efficacy in the P. chabaudi model. Given that cell-mediated immunity may also contribute to parasite control in human malaria, these data support the clinical development of viral-vectored vaccines that induce both T cell and Abs against Plasmodium falciparum blood-stage malaria Ags like AMA1.  相似文献   

7.
The disease outcome in malaria caused by the protozoan parasite Plasmodium is influenced by host genetic factors. To identify host genes conferring resistance to infection with the malaria parasite, we undertook chromosomal mapping using a whole-genome scanning approach in cross-bred mice. NC/Jic mice all died with high parasitemia within 8 days of infection with 1 x 10(5) parasitized erythrocytes. In contrast, 129/SvJ mice all completely excluded malaria parasites from the circulation and remained alive 21 days after infection. We performed linkage analysis in backcross [(NC/Jic x 129/SvJ)xNC/Jic] mice. The Pymr ( Plasmodium yoelii malaria resistance) locus was mapped to the telomeric portion of mouse Chromosome (Chr) 9. This locus controls host survival and parasitemia after infection. The Char1 locus ( P. chabaudi resistance locus 1), controlling host survival and peak parasitemia in P. chabaudi infection, was previously mapped to the same region. This host resistance locus mapping to Chr 9 may represent a ubiquitous locus controlling susceptibility to rodent malaria. Elucidation of the function of this gene will provide valuable insights into the mechanism of host defense against malaria parasite infection.  相似文献   

8.
CD36 is a scavenger receptor that has been implicated in malaria pathogenesis as well as innate defense against blood-stage infection. Inflammatory responses to Plasmodium falciparum GPI (pfGPI) anchors are believed to play an important role in innate immune response to malaria. We investigated the role of CD36 in pfGPI-induced MAPK activation and proinflammatory cytokine secretion. Furthermore, we explored the role of this receptor in an experimental model of acute malaria in vivo. We demonstrate that ERK1/2, JNK, p38, and c-Jun became phosphorylated in pfGPI-stimulated macrophages. In contrast, pfGPI-induced phosphorylation of JNK, ERK1/2, and c-Jun was reduced in Cd36(-/-) macrophages and Cd36(-/-) macrophages secreted significantly less TNF-alpha in response to pfGPI than their wild-type counterparts. In addition, we demonstrate a role for CD36 in innate immune response to malaria in vivo. Compared with wild-type mice, Cd36(-/-) mice experienced more severe and fatal malaria when challenged with Plasmodium chabaudi chabaudi AS. Cd36(-/-) mice displayed a combined defect in cytokine induction and parasite clearance with a dysregulated cytokine response to infection, earlier peak parasitemias, higher parasite densities, and higher mortality rates than wild-type mice. These results provide direct evidence that pfGPI induces TNF-alpha secretion in a CD36-dependent manner and support a role for CD36 in modulating host cytokine response and innate control of acute blood-stage malaria infection in vivo.  相似文献   

9.
To explore cell-mediated immune mechanisms in host defense against malaria, we utilized a murine model system in which antibody-independent mechanisms of immunity are known to play a major role. Splenic T lymphocytes obtained from Plasmodium chabaudi adami-immune mice were maintained in vitro by using IL 2-containing medium and frequent antigenic stimulation. These IL 2-propagated T lymphocytes were characterized for their antigen reactivity, surface phenotype, and ability to confer protection to P. chabaudi adami in reconstituted mice. IL 2-dependent T lymphocytes maintained their capacity to proliferate in vitro to solubilized parasite preparations of homologous but not heterologous antigens. Antigen-specific proliferation was H-2 restricted, requiring antigen-presenting cells of the correct haplotype. More importantly, these propagated T lymphocytes were effective in adoptively transferring protection to both athymic nude mice and sublethally irradiated recipients. The protective response was dose dependent and antigen specific, because recipients resisted challenge infection with P. chabaudi adami but not with the heterologous parasite Plasmodium yoelii 17X. Pretreatment of the IL 2-propagated cells with anti-Thy-1.2 and complement abrogated their ability to transfer protection. Collectively, these results suggest that T lymphocytes obtained from P. chabaudi adami-immune mice, propagated and expanded in vitro, retain antigen specificity and passive protective activity in vivo.  相似文献   

10.
Susceptible A/J and more resistant C57BL/6J mice were infected with Plasmodium chabaudi chabaudi 54X, P.c. chabaudi AS and Plasmodium chabaudi adami 408XZ. As expected, most C57BL/6J mice survived the infections with the different isolates. But in contrast to previous observations, not all A/J mice succumbed to infection: just over 50% of A/J mice survived infections with P.c. chabaudi 54X, while 80% survived P.c. chabaudi AS. The more virulent parasite, P.c. adami 408XZ, was able to kill all A/J mice and 20% of C57BL/6J mice after an intravenous infection with 10(5) pRBC. A detailed study of four parameters of pathology (body weight, body temperature, blood glucose and RBC counts) in both mouse strains after a P.c. adami 408XZ infection showed similar patterns to those previously reported after infection with P.c. chabaudi AS. These data suggest that environmental factors as well as parasite polymorphisms might influence the severity of malaria between susceptible and resistant mice.  相似文献   

11.
Ecological interactions between microparasite populations in the same host are an important source of selection on pathogen traits such as virulence and drug resistance. In the rodent malaria model Plasmodium chabaudi in laboratory mice, parasites that are more virulent can competitively suppress less virulent parasites in mixed infections. There is evidence that some of this suppression is due to immune-mediated apparent competition, where an immune response elicited by one parasite population suppress the population density of another. This raises the question whether enhanced immunity following vaccination would intensify competitive interactions, thus strengthening selection for virulence in Plasmodium populations. Using the P. chabaudi model, we studied mixed infections of virulent and avirulent genotypes in CD4+T cell-depleted mice. Enhanced efficacy of CD4+T cell-dependent responses is the aim of several candidate malaria vaccines. We hypothesized that if immune-mediated interactions were involved in competition, removal of the CD4+T cells would alleviate competitive suppression of the avirulent parasite. Instead, we found no alleviation of competition in the acute phase, and significant enhancement of competitive suppression after parasite densities had peaked. Thus, the host immune response may actually be alleviating other forms of competition, such as that over red blood cells. Our results suggest that the CD4+-dependent immune response, and mechanisms that act to enhance it such as vaccination, may not have the undesirable affect of exacerbating within-host competition and hence the strength of this source of selection for virulence.  相似文献   

12.
Several vector-borne infectious agents facultatively alter their life history strategies in response to local vector densities. Some evidence suggests that malaria parasites invest more heavily in transmission stage production (gametocytogenesis) when vectors are present. Such a strategy could rapidly increase malaria transmission rates, particularly when adult mosquitoes begin to appear after dry seasons. However, in contrast to a recent experiment with a rodent malaria (Plasmodium chabaudi), we found no change in gametocytogenesis in either P. chabaudi or in another rodent malaria, P. vinckei, when their mouse hosts were exposed to mosquitoes. Positive results in the earlier study may have been because mosquito-feeding caused anaemia in hosts, a known promoter of gametocytogenesis. The substantial evidence that malaria and a variety of other parasites facultatively alter transmission strategies in response to a variety of environmental influences makes our results surprising.  相似文献   

13.
We investigated the role of different TLRs and MyD88 in host resistance to infection and malaria pathogenesis. TLR2(-/-), TLR4(-/-), TLR6(-/-), TLR9(-/-) or CD14(-/-) mice showed no change in phenotypes (parasitemia, body weight and temperature) when infected with Plasmodium chabaudi chabaudi (AS). MyD88(-/-) mice displayed comparable ability to wild type animals in controlling and clearing parasitemia. Importantly, MyD88(-/-) mice exhibited impaired production of TNF-alpha and IFN-gamma as well as attenuated symptoms, as indicated by changes in body weight and temperature during parasitemia. Consistently, CD11b(+) monocytes and CD11c(+) dendritic cells from infected MyD88(-/-) mice were shown impaired for production of pro-inflammatory cytokines, and in initiating CD4(+) T cell responses. Importantly, the inhibition of T cell activation with anti-CD134L, mostly inhibited IFN-gamma, partially inhibited TNF-alpha production, and protected the animals from malaria symptoms. Our findings suggest that MyD88 and possibly its associated TLRs expressed by dendritic cells play an important role in pro-inflammatory responses, T cell activation, and pathogenesis of malaria, but are not critical for the immunological control of the erythrocytic stage of P. chabaudi.  相似文献   

14.
The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC) disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen and have identified a novel dominant (haploinsufficient) mutation in the Ank-1 gene (Ank1(MRI23420)) of mice displaying hereditary spherocytosis (HS). Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt). A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05). We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.  相似文献   

15.
The chromosome ends of human malaria parasites harbour many genes encoding proteins that are exported to the surface of infected red cells, often being involved in host-parasite interactions and immune evasion. Unlike other murine malaria parasites Plasmodium chabaudi undergoes antigenic variation during passage in the laboratory mouse and hence is a model suitable for investigation of switching mechanisms. However, little is known about the subtelomeric regions of P. chabaudi chromosomes and its variable antigens. Here we report 80 kb of sequence from an end of one P. chabaudi chromosome. Hybridization of probes spanning this region to two dimensional pulsed field gels of the genome revealed 10 multicopy gene families located exclusively in subtelomeric regions of multiple P. chabaudi chromosomes, interspersed amongst multicopy intergenic regions. Hence all chromosomes share a common subtelomeric structure, presumably playing a similar role in spatial positioning as the P. falciparum Rep20 sequence. Expression in blood stages, domains characteristic of surface antigens and copy numbers between four and several hundred per genome, indicate a functional role in antigenic variation for some of these families. We identify members of the cir family, as well as novel genes, that although clearly homologous to cir have large low complexity regions in the predicted extracellular domains. Although all families have homologues in other rodent Plasmodium species, four were previously not known to be subtelomeric. Six have homologues in human and simian malarias.  相似文献   

16.
R Carter 《Parasitology》1978,76(3):241-267
Electrophoretic variation of the enzymes glucose phosphate isomerase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase and glutamate dehydrogenase (NADP-dependent) has been studied in the African murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi and their subspecies. Horizontal starch gel electrophoresis was used throughout. The number of isolates examined in each subspecies varied from 1 (P. y. nigeriensis) to 24 (P. c. chabaudi). Extensive enzyme variation was found among isolates of most of the subspecies from which more than two such isolates were available for study. It is clear that the phenomenon of enzyme polymorphism is of common occurrence among malaria parasites. With the exception of P. berghei and P. yoelii, of which all isolates share an identical electrophoretic form of lactate dehydrogenase, no enzyme forms are shared between any of the 4 species of murine plasmodia. By contrast, within each species common enzyme forms are shared among each of the subspecies. The subspecies are nevertheless, distinguished from each other by the electrophoretic forms of at least one enzyme. The distribution and reassortment of enzyme variation among isolates of a single subspecies is in accordance with the concept of malaria parasites as sexually reproducing organisms. The study of variation among parasites present in individual wild-caught rodent hosts demonstrates that natural malarial infections usually comprise genetically heterogeneous populations of parasites. Nevertheless, the number of genetically distinct types of parasite of any one species present in a single infected host appears to be small. Generally not more than 2 or 3 clones of parasite of distinct genetic constitution are present in a single infected animal.  相似文献   

17.
Malaria and other haemosporin parasites must undergo a round of sexual reproduction in their insect vector in order to produce stages that can be transmitted to vertebrate hosts. Consequently, it is crucial that parasites produce the sex ratio (proportion of male sexual stages) that will maximize the number of fertilization and thus, transmission to new vertebrate hosts. There is some evidence to show that, consistent with evolutionary theory, the sex ratios of malaria parasites are negatively correlated to their inbreeding rate. However, recent theory has shown that when fertilization success is compromised, parasites should respond by increasing their investment in sexual stages or by producing a less female biased ration than predicted by their inbreeding rate alone. Here, we show that two species of rodent malaria, Plasmodium chabaudi and Plasmodium vinckei petteri, adopt different strategies in response to host anaemia, a factor though to compromise transmission success: P. chabaudi increases investment in sexual stages, whereas P. vinckei produces a less female biased sex ratio. We suggest that these different transmission strategies may be due to marked differences in host cell preference.  相似文献   

18.
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system.  相似文献   

19.
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.  相似文献   

20.
We characterize the mouse gene imap38 and its inducibility by Plasmodium chabaudi malaria among different lymphoid tissues and mouse strains of different H-2 complex and non-H-2 background. Imap38 is a single copy gene assigned to chromosome 6B. It consists of only one exon of 1900 base pairs encoding a highly basic 25.8-kDa protein. Confocal laser scanning microscopy localizes differently tagged IMAP38 proteins in nuclei of transfected cells. Reporter gene assays reveal that the 1730-base pair 5'-flanking region, containing an RSINE1 repeat immediately adjacent to initiation site +1, exhibits promoter activity in nonmurine cells, while it is largely repressed in diverse mouse cell lines, which corresponds to the situation in mouse tissues. P. chabaudi malaria induces imap38 expression almost exclusively in the spleen but not in other lymphoid organs. Parasite lysates are able to induce imap38 in the spleen, but not in spleen cells ex vivo. Activation of spleen cells by LPS and other stimuli is not sufficient to induce imap38. Inducibility of imap38 requires signals from both parasites and the intact spleen, and it is controlled by genes of that non-H-2 background, which also controls development of protective immunity against P. chabaudi malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号