首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

2.
3.
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.  相似文献   

4.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

5.
Ribosome-inactivating proteins (RIPs) are N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of ribosomal RNA. This modification renders the ribosome unable to bind the elongation factors, thereby inhibiting the protein synthesis. Maize RIP, a type III RIP, is unique compared to the other type I and type II RIPs because it is synthesized as a precursor with a 25-residue internal inactivation region, which is removed in order to activate the protein. In this study, we describe the first solution structure of this type of RIP, a  28-kDa active mutant of maize RIP (MOD). The overall protein structure of MOD is comparable to those of the other type I RIPs and the A-chain of type II RIPs but shows significant differences in specific regions, including (1) shorter β6 and αB segments, probably for accommodating easier substrate binding, and (2) an α-helix instead of an antiparallel β-sheet in the C-terminal domain, which has been reported to be involved in binding ribosomal protein P2 in some RIPs. Furthermore, NMR chemical shift perturbation experiments revealed that the P2 binding site on MOD is located at the N-terminal domain near the internal inactivation region. This relocation of the P2 binding site can be rationalized by concerted changes in the electrostatic surface potential and 3D structures on the MOD protein and provides vital clues about the underlying molecular mechanism of this unique type of RIP.  相似文献   

6.
Ribosome-inactivating proteins (RIPs) are plant proteins with enzymatic activity, classified as type 1 (single chain) or type 2 (two chains). They are identified as rRNA N-glycosidases (EC 3.2.2.22) and cause an irreversible inhibition of protein synthesis. Among type 2 RIPs, there are potent toxins (ricin is the best known) that are considered as potential biological weapons. The development of a fast and sensitive method for the detection of biological agents is an important tool to prevent or deal with the consequences of intoxication. In this article, we describe a very sensitive immuno-polymerase chain reaction (IPCR) assay for the detection of RIPs-a type 1 RIP (dianthin) and a type 2 RIP (ricin)-that combines the specificity of immunological analysis with the exponential amplification of PCR. The limit of detection (LOD) of the technique was compared with the LODs of the conventional immunological methods enzyme-linked immunosorbent assay (ELISA) and fluorescent immunosorbent assay (FIA). The LOD of IPCR was more than 1 million times lower than that of ELISA, allowing the detection of 10 fg/ml of dianthin and ricin. The possibility to detect ricin in human serum was also investigated, and a similar sensitivity was observed (10 fg/ml). IPCR appears to be the most sensitive method for the detection of ricin and other RIPs.  相似文献   

7.
Ribosome-inactivating proteins (RIPs) are enzymes that inhibit protein synthesis after depurination of a specific adenine in rRNA. The RIP family members are classified as type I RIPs that contain an RNA-N-glycosidase domain and type II RIPs that contain a lectin domain (B chain) in addition to the glycosidase domain (A chain). In this work, we identified 30 new plant RIPs and characterized 18 Ricinus communis RIPs. Phylogenetic and functional divergence analyses indicated that the emergence of type I and II RIPs probably occurred before the monocot/eudicot split. We also report the expression profiles of 18 castor bean genes, including those for ricin and agglutinin, in five seed stages as assessed by quantitative PCR. Ricin and agglutinin were the most expressed RIPs in developing seeds although eight other RIPs were also expressed. All of the RIP genes were most highly expressed in the stages in which the endosperm was fully expanded. Although the reason for the large expansion of RIP genes in castor beans remains to be established, the differential expression patterns of the type I and type II members reinforce the existence of biological functions other than defense against predators and herbivory.  相似文献   

8.
A growing body of evidence suggests that ribosome-inactivating proteins (RIPs) remove adenine moieties not only from rRNA, but also from DNA--an effect leading to DNA damage in cultured cells. We herein report that two distinct RIPs of bacterial (shiga toxin 1, Stx1) and plant (ricin) origin, inhibit the repair of the DNA lesions generated by hydrogen peroxide in cultured human cells. This effect is unrelated either to inhibition of protein synthesis or to depletion of cellular antioxidant defenses and is likely to derive from direct interactions with cellular DNA repair machinery. Therefore, the genotoxicity of these toxins on mammalian cells seems to be a complex phenomenon resulting from the balance between direct (DNA damaging activity), indirect (DNA repair inhibition) effects and the eventual presence of other DNA damaging species. In particular, with regard to Stx1, it could be hypothesized that Stx-producing bacteria increase the risk of transformation of surrounding, inflamed tissues in the course of human infections.  相似文献   

9.
The secondary structures, side-chain solvent accessibilities, and superpositioned crystal structures of the A-chain of ricin and four other plant rRNA N-glycosidases (ribosome-inactivating proteins, RIPs) were examined. Previously, a 26-residue fragment from the A-chain of ricin was determined to bind to a neutralizing monoclonal antibody. The region in the native ricin A-chain, to which this peptide corresponds, is solvent-exposed and contains a negatively charged residue that has been hypothesized to participate in the toxin's function, namely, rRNA binding and/or enzymatic activity. This region appears to be conserved in all of the structurally defined plant RIPs examined. Moreover, other plant RIPs, whose tertiary structures are, as yet, unknown, were predicted to have an analogous, solvent-exposed region containing a conserved, negatively charged residue. By analogy, these conserved structural and functional features lead to the suggestion that this exposed region represents a logical starting point for experiments designed to locate neutralizing epitopes in these RIPs. In contrast, the tertiary structure of the analogous region in a bacteria-derived RIP (Shiga toxin) is a less solvent-exposed, truncated loop and is a structure that is not as likely to be a neutralizing epitope. Because most of the amino acid residues are not conserved within this exposed region, these RIPs are predicted to be antigenically distinct.  相似文献   

10.
Pokeweed antiviral protein (PAP) produced by pokeweed plants is a single-chain (type I) ribosome-inactivating protein (RIP) that depurinates ribosomes at the alpha-sarcin/ricin loop of the large rRNA, resulting in inhibition of translation. Unlike the type II RIPs, which have an active and a binding moiety, PAP has only the active moiety. The mechanism by which toxins without a binding moiety gain access to cytosolic ribosomes is not known. We set up yeast as a simple and genetically tractable system to investigate how PAP accesses ribosomes and showed that the mature form of PAP is targeted to the cytosol from the endomembrane system in yeast. In the present study, we performed a systematic deletion analysis to identify the signal required for transport of PAP to the cytosol. We demonstrate here that processing of the C-terminal extension and sequences at the C-terminus of the mature protein are critical for its accumulation in the cytosol. Using a series of PAP mutants, we identified the C-terminal signal and demonstrated that it is distinct from the sequences required for ribosome depurination and cytotoxicity. The C-terminal motif showed sequence similarity to type II RIPs that retrotranslocate from the endoplasmic reticulum to the cytosol. These results demonstrate that a conserved sequence at the C-terminus of a type I RIP mediates its transport to the cytosol and suggest that type I and II RIPs may use a common signal to enter the cytosol.  相似文献   

11.
alpha-Sarcin from Aspergillus giganteus and the ribosome-inactivating proteins (RIPs) from higher plants inactivate the 60 S ribosomal subunit. The former is an RNAase, whereas RIPs are N-glycosidases. The site of cleavage of RNA and that of N-glycosidic depurinization are at one nucleotide distance in 28 S rRNA [Endo & Tsurugi (1987) J. Biol. Chem. 262, 8128-8130]. The effect of alpha-sarcin and that of RIPs on the interaction of elongation factors with Artemia salina (brine shrimp) ribosomes have been investigated. alpha-Sarcin inhibits both the EF1 (elongation factor 1)-dependent binding of aminoacyl-tRNA and the GTP-dependent binding of EF2 (elongation factor 2) to ribosomes, whereas two of the RIPs tested, ricin from Ricinus communis (castor bean) and volkensin from Adenia volkensii (kilyambiti), inhibit only the latter reaction. EF2 protects ribosomes from inactivation by both alpha-sarcin and ricin. The EF1-binding site is affected only by alpha-sarcin. The sensitivity of this site to alpha-sarcin is increased by pretreatment of ribosomes with ricin. A. salina ribosomes were highly resistant to the third RIP tested, namely gelonin from Gelonium multiflorum. All four proteins tested have, however, a comparable activity on the rabbit reticulocyte-lysate system.  相似文献   

12.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

13.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

14.
The enzymatic subunit of Shiga toxin (StxA1) is a member of the ribosome-inactivating protein (RIP) family, which includes the ricin A chain as well as other examples of plant toxins. StxA1 catalytically depurinates a well-conserved GAGA tetra-loop of 28S rRNA which lies in the acceptor site of eukaryotic ribosomes. The specific activities of native StxA1, as well as mutated forms of the enzyme with substitutions in catalytic site residues, were measured by an in vitro translation assay. Electroporation was developed as an alternative method for the delivery of purified A1 polypeptides into Vero cells. Site-directed mutagenesis coupled with N-bromosuccinimide modification indicated that the sole tryptophan residue of StxA1 is required for binding it to the 28S rRNA backbone. Northern analysis established that the catalytic site substitutions reduced enzymatic activity by specifically interfering with the capacity of StxA1 to depurinate 28S rRNA. Ribosomes were protected from StxA1 by molar excesses of tRNA and free adenine, indicating that RIPs have the capacity to enter the acceptor site groove prior to binding and depurinating the GAGA tetra-loop.  相似文献   

15.
Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A(1) chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A(1) chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 μM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A(1) chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A(1) variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A(1) chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A(1) chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A(1) chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs.  相似文献   

16.
Shiga toxins and Shiga-like toxins (Stx) are a relatively large group of cytotoxins produced by certain serotypes of Shigella and E. coli (STEC). These toxins are responsible for diarrhea, hemorrhagic colitis and may induce hemolytic uremic syndrome (HUS) with serious consequences in young children. The toxins are proteins made up of 5 small B subunits responsible for binding to an outer membrane ligand on host cells and surround the larger, biologically active A subunit. For Shiga-like toxin 1 (Stx1), the cellular receptor is the carbohydrate globotriose. Stx1was purified from STEC. We utilized induction of apoptosis in the human monocyte cell line THP-1, as a biological endpoint to test the stability of Stx1 activity added to fruit punch at different pH (2-9) and temperatures (4 and 20 degrees C). A flow cytometric method was used to test for early and late apoptotic events based on binding of R-phycoerytherin-labeled annexin V to exposed membrane phosphatidyl serine. Membrane permeability to 7-Amino-actinomycin corresponds with late apoptosis or necrosis. The combination of acid pH and higher storage temperature resulted in greatest degree of toxin inactivation. This approach provides a rapid and high throughput method to determine the functional activity of Stx1, and related toxins in a food matrix.  相似文献   

17.
It has been known that ribosome-inactivating proteins (RIPs) from plants damage ribosomes by removing adenine from a precise position of rRNA. Subsequently it was observed that all tested RIPs depurinate DNA, and some of them also non-ribosomal RNAs and poly(A), hence the denomination of adenine polynucleotide glycosylases was proposed. We report now that ricin, saporin-L2, saporin-S6, gelonin and momordin depurinate also poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase (auto modified enzyme), an enzyme involved in DNA repair. We observed also that all RIPs but gelonin induce transformation of fibroblasts, possibly as a consequence of damage to DNA and of the altered DNA repair system.  相似文献   

18.
Alpha-sarcin and ricin represent two structurally and mechanistically distinct families of site-specific enzymes that block translation by irreversibly modifying the sarcin/ricin loop (SRL) of 23S-28S rRNA. alpha-Sarcin family enzymes are designated as ribotoxins and act as endonucleases. Ricin family enzymes are designated as ribosome inactivating proteins (RIP) and act as N-glycosidases. Recently, we demonstrated that basic surface residues of the ribotoxin restrictocin promote rapid and specific ribosome targeting by this endonuclease. Here, we report that three RIP: ricin A, saporin, and gypsophilin depurinate the ribosome with strong salt sensitivity and achieve unusually fast kcat/Km approximately 10(9)-10(10) M(-1) s(-1), implying that RIP share with ribotoxins a common mechanism of electrostatically facilitated ribosome targeting. Bioinformatics analysis of RIP revealed that surface charge properties correlate with the presence of the transport chain in the RIP molecule, suggesting a second role for the surface charge in RIP transport. These findings put forward surface electrostatics as an important determinant of RIP activity.  相似文献   

19.
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1–Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a r ibosome- i nactivating p rotein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.  相似文献   

20.
A comparison has been made of the amino-terminal sequences of a number of ribosome-inhibiting proteins (RIPs) and cytotoxins. These include the monomeric enzymes PAP, PAP-S, PAP-II, and dodecandrin and the enzymatic A chains from the heterodimeric toxins ricin and modeccin. We show that these proteins have all evolved from a single ancestor. A statistical analysis is used to show the likely evolutionary relationship among the proteins. A similar analysis was performed on the amino-terminal sequences of ricin, Ricinus agglutinin, and modeccin B chains. These are galactoside-binding proteins associated with the A-chain enzymes. From the two comparisons we propose a scheme for the development of two major classes of proteins. The RIP and sugar-binding genes probably evolved independently. In some plant lines the genes never fused, although the RIP gene replicated and developed into several proteins expressed at various stages of plant maturation. In another line the RIP gene fused with a sugar binding (B-chain) gene to form the class of heterodimeric toxins. In some species this fused gene appears to have multiplied, one or more of the toxin genes mutating to code for a self-dimerizing agglutinin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号