首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The submergence‐tolerance regulator, SUBMERGENCE1A (SUB1A), of rice (Oryza sativa L.) modulates gene regulation, metabolism and elongation growth during submergence. Its benefits continue during desubmergence through protection from reactive oxygen species and dehydration, but there is limited understanding of SUB1A's role in physiological recovery from the stress. Here, we investigated the contribution of SUB1A to desubmergence recovery using the two near‐isogenic lines, submergence‐sensitive M202 and tolerant M202(Sub1). No visible damage was detected in the two genotypes after 3 d of submergence, but the sublethal stress differentially altered photosynthetic parameters and accumulation of energy reserves. Submergence inhibited photosystem II photochemistry and stimulated breakdown of protein and accumulation of several amino acids in both genotypes at similar levels. Upon desubmergence, however, more rapid return to homeostasis of these factors was observed in M202(Sub1). Submergence considerably restrained non‐photochemical quenching (NPQ) in M202, whereas the value was unaltered in M202(Sub1) during the stress. Upon reaeration, submerged plants encounter sudden exposure to higher light. A greater capability for NPQ‐mediated photoprotection can benefit the rapid recovery of photosynthetic performance and energy reserve metabolism in M202(Sub1). Our findings illuminate the significant role of SUB1A in active physiological recovery upon desubmergence, a component of enhanced tolerance to submergence.  相似文献   

2.
3.
When flash flood intolerant rice cultivars are submerged, they show greater morphological changes such as elongation and chlorosis than tolerant cultivars. These morphological responses are caused by ethylene produced during submergence, however, a visible damage of intolerant cultivars is markedly developing after desubmergence rather than during submergence, which is probably due to oxidative damage. We studied the effect of ethylene produced during submergence on antioxidant content and oxidative damage after desubmergence. When rice (Oryza sativa) was submerged for 8 days, both tolerant cultivar (BKNFR) and intolerant cultivars (Mashuri and IR42) showed a decrease in ascorbate concentration during submergence. After 3 days of desubmergence, the tolerant cultivar showed a rapid recovery of total ascorbate and ascorbic acid, whereas intolerant cultivars showed a slow recovery of them, an increase in malondialdehyde formation, and low survival rate (about 30%). However, applying 200 mg l−1 of AgNO3 as an ethylene antagonist to intolerant cultivars suppressed the decrease in ascorbate and the increase in malondialdehyde formation after desubmergence, and improved survival rate to about 60%. Ascorbic acid supply to leaf discs from submerged IR42 suppressed increase in malondialdehyde formation by incubation under the light for 24 h. In addition, strong negative correlations were observed between malondialdehyde formation with ascorbate concentration (r=−0.93) and with percentage of survival (r=−0.98). Our results indicate that the accumulated ethylene during submergence adversely affected antioxidant mechanism in intolerant rice cultivars after desubmergence, and ascorbic acid was an important antioxidant in vivo for the recovery of submerged rice seedlings.  相似文献   

4.
5.
Although the genetic mechanism of submergence survival for rice varieties containing the SUB1A gene has been elucidated, the downstream metabolic effects have not yet been evaluated. In this study, the metabolomes of Oryza sativa ssp. japonica cv. M202 and cv. M202(Sub1) were profiled using (1)H NMR spectroscopy to compare the metabolic effect of submergence stress and recovery on rice in the presence or absence of SUB1A. Significant changes were observed in the NMR resonances of compounds in pathways important for carbohydrate metabolism. The presence of SUB1A in M202(Sub1) was correlated with suppression of carbohydrate metabolism in shoot tissue, consistent with the role of SUB1A in limiting starch catabolism to fuel elongation growth. The absence of SUB1A in M202 was correlated with greater consumption of sucrose stores and accumulation of amino acids that are synthesized from glycolysis intermediates and pyruvate. Under submergence conditions, alanine, a product of pyruvate metabolism, showed the largest difference between the two varieties, but elevated levels of glutamine, glutamate, leucine, isoleucine, threonine, and valine were also higher in M202 compared with the M202(Sub1) variety. The identification and characterization of alanylglycine (AlaGly) in rice is also reported. After 3 days of submergence stress, AlaGly levels decreased significantly in both genotypes but did not recover within 1 day of desubmergence with the other metabolites evaluated. The influence of SUB1A on dynamic changes in the metabolome during complete submergence provides new insights into the functional roles of a single gene in invoking a quiescence strategy that helps stabilize crop production in submergence-prone fields.  相似文献   

6.
Background and AimsSubmergence tolerance in rice is primarily attributed to the action of the SUB1 gene, but other associated traits such as leaf gas film (LGF) thickness, leaf hydrophobicity, porosity and leaf density have been known to aid submergence tolerance in rice. However, association of these traits with SUB1 quantitative trait locus (QTL) has not been demonstrated. In this study, we aim to investigate (1) whether the presence of the SUB1 QTL in the genetic background has any influence on the thickness of the LGF and (ii) whether its removal has any impact on stress perception and submergence tolerance in Sub1 and non-Sub1 rice.MethodsWe examined 12 genotypes (including both Sub1 and non-Sub1 types) for different leaf traits such as initial LGF thickness, leaf hydrophobicity, tissue porosity and leaf density in order to work out the relatioship of these traits to the SUB1 QTL in rice. Furthermore, we investigated the changes in the gene expression profile and different metabolic processes in selected genotypes in the presence and absence of their LGF to study its impact on stress perception and adaptation.Key ResultsThe initial thickness of the LGF and hydrophobicity seemed to have a highly positive correlation with the presence of the SUB1 QTL in the genetic background of rice; however, other leaf traits such as porosity and density seemed to be independent of it. Artificial removal of the LGF resulted in partial loss of tolerance, showing increased ethylene production and early induction of anoxia-related genes (SUB1A-1, ACS5, Ramy3D and ADH1) which manifested symptoms such as increased stem elongation, faster chlorophyll and starch breakdown, and partial loss of quiescence in SUB1-containing rice genotypes. Stripping of the LGF resulted in early and enhanced induction of SUB1A-1, indicating a quicker perception of stress.ConclusionsThe presence of SUB1 in the genetic background positively influences surface hydrophobicity and the concomitant LGF thickness of rice. Furthermore, LGF helps in terms of providing better ethylene dissipation and reduced in planta accumulation, owing to the slowing down of ethylene-induced leaf senescence under submergence stress.  相似文献   

7.
8.
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood‐tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A‐genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance‐related SUB1A‐1 and the intolerance‐related SUB1A‐2 alleles were found in tolerant and sensitive accessions, respectively. Flooding‐tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C‐genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence‐induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A‐1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C‐genome group, which show instead a SUB1A‐independent response to submergence.  相似文献   

9.
The study aims at identifying some submergence-tolerant rice genotypes through morphological and molecular characterization and their genetic variability analysis. Ten rice genotypes including two submergence-tolerant checks, two susceptible varieties and six advanced lines were evaluated for submergence tolerance in the laboratory and in the field during January–December 2015. The experiment was conducted in the field following randomized complete block design in a two-factor arrangement using five replications. Ten characters, viz. days to flowering, plant height, tiller number plant?1, effective tiller plant?1, and yield plant?1 etc. were studied for four treatments. A significant genotype × environment interaction was observed for all traits studied in this experiment. The yield was reduced for all genotypes at a different level of submergence stress compared to control. Binadhan-11, Binadhan-12, RC 249 and RC 251 showed tolerance, whereas RC 192, RC 193 and RC 225 showed moderate tolerance in submerged condition. The phenotypic coefficient of variance (PCV) was higher than the genotypic coefficient of variance (GCV) in all the studies traits. High heritability (75–97%) was found for all traits. High heritability along with high genetic advance was found for days to flowering (45.55) and plant height (40.05). Molecular characterization of the used genotypes was done with three SSR markers viz. RM 24, and submergence specific SC3 and SUB1. SC3 was found reliable for detection of submergence tolerant genotypes due to the highest gene diversity (0.840) compared to others. The banding pattern of the submergence specific markers SC3 and SUB1 identified in Binadhan-11, Binadhan-12, RC 192, RC 193, RC 225, RC 227, RC 249, and RC 251, which possess the SUB1 gene. Finally, clustering also separates the tolerant genotypes from the susceptible by dividing them into different clusters. The identified genotypes might be useful for the breeding programme for the development of submergence tolerant as well as resistant rice variety in Bangladesh.  相似文献   

10.
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs.Gibberellic acid(CA) and abscisic acid(ABA) play critical roles in the developmental programs and environmental responses,respectively,through complex signaling and metabolism networks.However,crosstalk between the two phytohormones in stress responses remains largely unknown.In this study,we report that CIBBERELLIN-INSENSITIVE DWARF 1(GID1),a soluble receptor for GA,regulates stomatal development and patterning in rice(Oryza sativa L.).The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions,but it exhibited enhanced sensitivity to exogenous ABA.Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions.Interestingly,the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions,and showed enhanced reactive oxygen species(ROS)-scavenging ability and submergence tolerance compared with the wild-type.Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA,and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption.Taken together,these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.  相似文献   

11.
Abstract. Drought avoidance due to cuticular control increases with leaf number to a maximum in the intermediate leaves, decreasing to a minimum in the upper leaves. Dehydrated intermediate leaves do not rehydrate detectably when floated on water for several days. Excision of their petioles when submerged, permits full rehydration, presumably via the xylem. Stressing the plant by withholding water for 1–3 weeks fails to increase this already high resistance to water movement through the leaf surface. It does, however, markedly decrease the loss of water from the fully rehydrated (100% RWC) leaves during the first hour of dehydration, presumably due to a more rapid stomatal closure than in the non-stressed leaves. Dehydration tolerance increases with leaf number, without an intermediate maximum. The intermediate and upper leaves were markedly more tolerant of dehydration after drought-induced stress than when non-stressed. Dehydration tolerance in some cases, was inversely proportional to dehydration rate. It was possible, however, to equalize the rates of dehydration of drought-stressed and non-drought-stressed leaves without affecting the greater tolerance of the drought-stressed leaves. Dehydration avoidance by osmotic adjustment was markedly developed in the slowly dehydrated attached leaves of drought-stressed plants, but not in the rapidly dehydrated excised leaves. This is evidence of drought acclimation. It must, therefore, be concluded that the slow dehydration of the drought-stressed plants also leads to the increase in dehydration tolerance by permitting drought-induced acclimation. The overall drought resistance of cabbage leaves depends on the three components: drought avoidance, dehydration avoidance and dehydration tolerance. The latter two increase during acclimation but the cuticular control of drought avoidance does not.  相似文献   

12.
Short-term submergence is a recurring problem in many rice production areas. The SUB1 gene, derived from the tolerant variety FR13A, has been transferred to a number of widely grown varieties, allowing them to withstand complete submergence for up to 2 weeks. However, in areas where longer-term submergence occurs, improved varieties having higher tolerance levels are needed. To search for novel quantitative trait loci (QTLs) from other donors, an F2:3 population between IR72 and Madabaru, both moderately tolerant varieties, was investigated. After a repeated phenotyping of 466 families under submergence stress, a subset of 80 families selected from the two extreme phenotypic tails was used for the QTL analysis. Phenotypic data showed transgressive segregation, with several families having an even higher survival rate than the FR13A-derived tolerant check (IR40931). Four QTLs were identified on chromosomes 1, 2, 9, and 12; the largest QTL on chromosome 1 had a LOD score of 11.2 and R 2 of 52.3%. A QTL mapping to the SUB1 region on chromosome 9, with a LOD score of 3.6 and R 2 of 18.6%, had the tolerant allele from Madabaru, while the other three QTLs had tolerant alleles from IR72. The identification of three non-SUB1 QTLs from IR72 suggests that an alternative pathway may be present in this variety that is independent of the ethylene-dependent pathway mediated by the SUB1A gene. These novel QTLs can be combined with SUB1 using marker assisted backcrossing in an effort to enhance the level of submergence tolerance for flood-prone areas.  相似文献   

13.
Adverse effects of elongation growth on tolerance to completesubmergence for up to 14 d were evaluated in rice seedlingsof cultivars which differed in submergence tolerance. Thereis a good negative correlation between per cent survival andelongation growth of genotypes during complete submergence (r= – 0.81). When elongation growth underwater is minimizedby application of a gibberellin biosynthesis inhibitor, percent survival increases by as much as 50 times for one cultivar.These effects are likely related to elongation growth since(i) addition of gibberellin had the opposite effect by reducingsurvival, and (ii) when the elongation inhibitor and gibberellinwere added together, there was no effect on elongation growthand the per cent survival did not change. A GA-deficient mutantof rice which had little elongation ability during submergenceshowed a high level of submergence tolerance when plants weresubmerged at equal initial dry weights and carbohydrate levelsrelative to a submergence-tolerant cultivar. These results areconsistent with the hypothesis that elongation growth competeswith maintenance processes for energy and hence reduces survivalduring submergence. The impact of these findings is that inenvironments where elongation ability is not required, thereis a potential to increase submergence tolerance of agriculturallyimportant cultivars by selecting for least elongation, at leastduring periods of complete submergence. Furthermore, this trade-offbetween stimulated elongation growth and submergence tolerancewill have important ecological consequences for the distributionof plant species in different flood-prone environments. Key words: Gibberellin, growth, Oryza sativa, rice, submergence  相似文献   

14.
15.
Flooding imposes severe selection pressure on plants, principally because excess water in their surroundings deprives the plants from certain basic resources such as oxygen, carbon dioxide and light for photosynthesis. Here, the effects of nitrogen and phosphorus application and their application time, on four Indica rice cultivars and their tolerance to submergence under turbid and clear flood water was studied. Submergence tolerance on metabolic changes, photosynthetic (Pn) rate and ethylene accumulation were evaluated. Submergence substantially reduced survival, chlorophyll, soluble sugars, Pn rate across cultivars with drastic reduction in IR‐20. Sub1 cultivars showed greater Pn rate as compared to sensitive cultivar under submergence because of better protection of chlorophyll, more stomatal conductance leading to higher survival. Turbid water resulted in lower under‐water photosynthesis because of poor light transmission, chlorophyll retention and silt deposition and ultimately poor survival. Foliar spray of N after desubmergence along with basal P improved the chlorophyll, soluble sugars and Pn rate and extenuated ethylene accumulation and shoot elongation resulting in significantly higher survival. To the best of our knowledge, this is the first time that such a study has been performed. Crop establishment could therefore be enhanced in areas where untimely flooding is anticipated by applying basal P and foliar spray of post‐submergence N.  相似文献   

16.
Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.

Mitochondrial ACONITASE3 is important for the acclimation to submergence stress by integrating carbon and nitrogen metabolism and impacting stress signaling pathways.  相似文献   

17.
Drought and submergence are the main adverse factors affecting plant growth and yield formation in parts of China, especially in the Yangtze River region. In this study, T1 (drought duration: 10 d), T2 (submergence duration: 8 d) and CK (control) treatments were applied. This work aimed to study the changes in metabolic pathways of rice under drought and submergence stress during the panicle differentiation stage. The identification and analysis of differential metabolites and differentially expressed proteins functions indicate that drought and submergence mainly promoted the energy metabolism pathway, carbon fixation in photosynthetic organism pathway, carbohydrate metabolic process, and reactive oxygen species (ROS) metabolic process functions. Under drought stress, the inhibition of photosynthetic rate is mainly through stomatal conductance restriction, and flavonoid pathway regulates the metabolic process of ROS. Under submergence stress, the electron transfer chain was destroyed to inhibit the photosynthetic rate, and the antioxidant system was activated to regulate the metabolism of ROS. The changes in related enzymes or proteins in metabolic regulatory networks are analyzed, which will be conducive to understanding the response mechanism of rice drought and submergence more deeply and provide a scientific basis for rice drought and submergence prevention and mitigation, and the breeding of drought- and submergence-resistant varieties.  相似文献   

18.
19.
Submergence is a widespread problem of rice production, especially in low-lying areas in South and Southeast Asia. Despite the success of Sub1 mega varieties, repeated instances of prolonged and severe flooding in stress-prone areas suggests that the SUB1 gene is no longer sufficient in those regions and requires improved varieties with increased tolerance. A study was conducted to identify quantitative trait loci (QTLs) associated with submergence tolerance using 115 F7 recombinant inbred lines (RILs) derived from the cross of Ciherang-Sub1, a popular Indonesian cultivar carrying the SUB1 gene that has relatively higher tolerance to submergence compared to the performance of most other Sub1 lines and the submergence and stagnant flooding tolerant IR10F365. As the tolerant allele at SUB1A on chromosome 9 was fixed in this mapping population, additional QTLs responsible for submergence tolerance were expected to be revealed. Genotyping with an Infinium 6K SNP chip resulted in 469 polymorphic markers that were then used for QTL mapping. Phenotyping was performed under complete submergence with two replicates. A major QTL for submergence derived from Ciherang-Sub1, named qSUB8.1, was detected on chromosome 8 with a LOD score of 10.3 and phenotypic variance of 27.5%. Additionally, a smaller QTL, also derived from Ciherang-Sub1, was detected on chromosome 2 with a LOD score of 3.5 and phenotypic variance of 12.7%. There was no digenic interaction detected between these QTLs suggesting their independent action. The QTLs detected in this study can be used in marker-assisted selection to further improve the tolerance of other Sub1 varieties.  相似文献   

20.
水稻的耐淹性状及其Sub1基因   总被引:2,自引:0,他引:2  
熊怀阳  李阳生 《遗传》2010,32(9):886-893
近4年来, 水稻(Oryza sativa L.)耐淹性状及其分子机理的研究取得了长足的进展。水稻植株的耐淹性状主要由Submergence-1 (Sub1) 基因控制。Sub1通过调节乙烯和赤霉素介导的反应, 抑制淹水期间的伸长生长和减缓碳水化合物消耗来控制耐淹性状。文章介绍了水稻应对淹涝胁迫的两种策略, 影响耐淹性状的主要生理因素, Sub1基因定位以及它控制耐淹性状的机理; 阐述了Sub1基因在我国杂交水稻生产方面的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号