首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here the identification and characterization of an SCP3 (small C-terminal domain phosphatase-3) homologue in smooth muscle and show, for the first time, that it dephosphorylates CaMKII [Ca(2+)/CaM (calmodulin)-dependent protein kinase II]. SCP3 is a PP2C (protein phosphatase 2C)-type phosphatase that is primarily expressed in vascular smooth muscle tissues and specifically binds to the association domain of the CaMKIIgamma G-2 variant. The dephosphorylation is site-specific, excluding the Thr(287) associated with Ca(2+)/CaM-independent activation of the kinase. As a result, the autonomous activity of CaMKIIgamma G-2 is not affected by the phosphatase activity of SCP3. SCP3 co-localizes with CaMKIIgamma G-2 on cytoskeletal filaments, but is excluded from the nucleus in differentiated vascular smooth muscle cells. Upon depolarization-induced Ca(2+) influx, CaMKIIgamma G-2 is activated and dissociates from SCP3. Subsequently, CaMKIIgamma G-2 is targeted to cortical adhesion plaques. We show here that SCP3 regulates phosphorylation sites in the catalytic domain, but not those involved in regulation of kinase activation. This selective dephosphorylation by SCP3 creates a constitutively active kinase that can then be differentially regulated by other phosphorylation-dependent regulatory mechanisms.  相似文献   

2.
PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling   总被引:8,自引:0,他引:8  
Lin X  Duan X  Liang YY  Su Y  Wrighton KH  Long J  Hu M  Davis CM  Wang J  Brunicardi FC  Shi Y  Chen YG  Meng A  Feng XH 《Cell》2006,125(5):915-928
  相似文献   

3.
Kim JY  Lee JM  Cho JY 《FEBS letters》2011,585(8):1121-1126
Ubiquitin C-terminal hydrolase-L3 (Uch-L3), a deubiquitinating enzyme, is upregulated in bone morphogenetic protein 2-induced osteoblast differentiation. The mechanism and role of Uch-L3 in the process of osteoblast differentiation is unknown. We found that Uch-L3 physically interacts with Smad1 and dramatically decreases the amount of poly-ubiquitinated Smad1. Osteoblast differentiation was enhanced in the C2C12 cells stably transfected with Uch-L3. Otherwise, the siRNA knock-down of Uch-L3 resulted in the decrease of osteoblast differentiation. These results suggest that Uch-L3 enhances osteoblast differentiation through the stabilization of Smad1 signaling. Thus, Uch-L3 acts to fine-tune the process of Smad1 activation.  相似文献   

4.
5.
Although Porphyromonas gingivalis lipopolysaccharide (P‐LPS) is known to inhibit osteoblast differentiation, the exact molecular mechanisms underlying this phenomenon remain unclear. Here, we investigated the role of Notch signaling in the osteoblastic differentiation of both MC3T3E‐1 cells and primary mouse bone marrow stromal cells (BMSCs). P‐LPS stimulation activated the Notch1 signaling cascade and increased expression of the Notch target genes HES1 and HEY1. P‐LPS can also act as an inhibitor because it is capable of suppressing Wnt/β‐catenin signaling in preosteoblasts by decreasing both glycogen synthase kinase‐3β (GSK‐3β) phosphorylation and the expression of nuclear β‐catenin. These effects were rescued, however, by inhibiting Notch1 signaling. Furthermore, P‐LPS treatment inhibited osteoblast differentiation in preosteoblasts as demonstrated by reductions in alkaline phosphatase activity, osteoblast gene expression, and mineralization, all of which were rescued by suppression of Notch1 signaling. Moreover, inhibition of GSK‐3β, HES1, or HEY1 partially reversed the P‐LPS‐induced inhibition of osteoblast differentiation. Together, these findings suggest that P‐LPS inhibits osteoblast differentiation by promoting the expression of Notch target genes and suppressing canonical Wnt/β‐catenin signaling. J. Cell. Physiol. 225: 106–114, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes. [BMB Reports 2014; 47(4): 192-196]  相似文献   

7.
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.  相似文献   

8.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.  相似文献   

9.
10.
11.
Functional involvement of the Notch pathway in osteoblastic differentiation has been previously investigated using the truncated intracellular domain, which mimics Notch signaling by interacting with the DNA-binding protein CBF-1. However, it is unclear whether Notch ligands Delta1 and Jagged1 also induce an identical cellular response in osteoblastic differentiation. We have shown that both Delta1 and Jagged1 were expressed concomitantly with Notch1 in maturating osteoblastic cells during bone regeneration and that overexpressed and immobilized recombinant Delta1 and Jagged1 alone did not alter the differentiated state of MC3T3-E1 and C2C12 cells. However, they augmented bone morphogenetic protein-2 (BMP2)-induced alkaline phosphatase activity and the expression of several differentiation markers, except for osteocalcin, and ultimately enhanced calcified nodule and in vivo ectopic bone formation of MC3T3-E1. In addition, both ligands transmitted signal through the CBF-1-dependent pathway and stimulated the expression of HES-1, a direct target of Notch pathway. To test the necessity of Notch signaling in BMP2-induced differentiation, Notch signaling was inhibited by the dominant negative extracellular domain of Notch1, specific inhibitor, or small interference RNA. These treatments decreased alkaline phosphatase activity as well as the expression of other differentiation markers and inhibited the promoter activity of Id-1, a target gene of the BMP pathway. These results indicate the functional redundancy between Delta1 and Jagged1 in osteoblastic differentiation whereby Delta1/Jagged1-activated Notch1 enhances BMP2-induced differentiation through the identical signaling pathway. Furthermore, our data also suggest that functional Notch signaling is essential not only for BMP2-induced osteoblast differentiation but also for BMP signaling itself.  相似文献   

12.
In the present study, we examined the hypothesis that the C-type natriuretic peptide (CNP) enhances osteogenic protein-1 (OP-1) action in stimulating osteoblastic cell differentiation in primary cultures of fetal rat calvaria cell (FRC). CNP enhanced synergistically the OP-1-induced Alkaline Phosphatase (AP) activity and mineralized bone nodule formation in a dose- and time-dependent manner. To examine possible mechanism of the synergy between OP-1 and CNP, the expression levels of key BMP receptors and signaling molecules were examined. Western blot analysis showed that BMPR-IB and -II receptor protein expression was not affected by CNP alone, but was stimulated by OP-1 alone. The combination of OP-1 and CNP did not further increase their protein levels. The Runx2 protein expression level was not altered by CNP alone, but was elevated by OP-1 alone, and was slightly reduced by the combination. The Smad5 protein expression level was slightly decreased by CNP alone, but was stimulated by OP-1 alone, and was not further stimulated by the combination. Smad5 phosphorylation was not stimulated by CNP alone, but was stimulated significantly by OP-1 alone. The combination of OP-1 and CNP further stimulated the OP-1-induced Smad5 phosphorylation. Thus, one mechanism of the observed synergy between OP-1 and CNP involves enhancement of the Smad5 phosphorylation.  相似文献   

13.
14.
15.
Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of ~200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1 kinase domain show an open conformation; the activity of the kinase domain alone is substantially higher in vitro than full-length Chk1, and coimmunoprecipitation studies suggest the C-terminal domain may contain an autoinhibitory activity. However, we show that truncation of the C-terminal domain inactivates Chk1 in vivo. We identify additional mutations within the C-terminal domain that activate ectopically expressed Chk1 without the need for activating phosphorylation. When expressed from the endogenous locus, activated alleles show a temperature-sensitive loss of function, suggesting these mutations confer a semiactive state to the protein. Intragenic suppressors of these activated alleles cluster to regions in the catalytic domain on the face of the protein that interacts with substrate, suggesting these are the regions that interact with the C-terminal domain. Thus, rather than being an autoinhibitory domain, the C-terminus of Chk1 also contains domains critical for adopting an active configuration.  相似文献   

16.
17.
18.
19.
The versatility of intracellular calcium as a second messenger is seen in its ability to mediate opposing events such as neuronal cell growth and apoptosis. A leading hypothesis used to explain how calcium regulates such divergent signaling pathways is that molecules responsible for maintaining calcium homeostasis have multiple roles. For example, chromogranin B (CGB), a calcium binding protein found in secretory granules and in the lumen of the endoplasmic reticulum, buffers calcium and also binds to and amplifies the activity of the inositol 1,4,5-trisphosphate receptor (InsP(3)R). Previous studies have identified two conserved domains of CGB, an N-terminal domain (N-CGB) and a C-terminal domain (C-CGB). N-CGB binds to the third intraluminal loop of the InsP(3)R and inhibits binding of full-length CGB. This displacement of CGB decreases InsP(3)R-dependent calcium release and alters normal signaling patterns. In the present study, we further characterized the role of N-CGB and identified roles for C-CGB. The effect of N-CGB on calcium release depended upon endogenous levels of cellular CGB, whereas the regulatory effect of C-CGB was apparent regardless of endogenous levels of CGB. When either full-length CGB or C-CGB was expressed in cells, calcium transients were increased. Additionally, the calcium signal initiation site was altered upon C-CGB expression in neuronally differentiated PC12 and SHSY5Y cells. These results show that CGB has numerous regulatory roles and that CGB is a critical component in modulating InsP(3)R-dependent calcium signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号