首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α1-Antichymotrypsin (α1-ACT) is a specific inhibitor of leukocyte-derived chymotrypsin-like proteases with largely unknown functions in tissue repair. By examining human and murine skin wounds, we showed that following mechanical injury the physiological repair response is associated with an acute phase response of α1-ACT and the mouse homologue Spi-2, respectively. In both species, attenuated α1-ACT/Spi-2 activity and gene expression at the local wound site was associated with severe wound healing defects. Topical application of recombinant α1-ACT to wounds of diabetic mice rescued the impaired healing phenotype. LC-MS analysis of α1-ACT cleavage fragments identified a novel cleavage site within the reactive center loop and showed that neutrophil elastase was the predominant protease involved in unusual α1-ACT cleavage and inactivation in nonhealing human wounds. These results reveal critical functions for locally acting α1-ACT in the acute phase response following skin injury, provide mechanistic insight into its function during the repair response, and raise novel perspectives for its potential therapeutic value in inflammation-mediated tissue damage.  相似文献   

2.
3.
Protein phosphatase magnesium-dependent 1A (PPM1A), a protein serine/threonine phosphatase, controls several signal pathways through cleavage of phosphate from its substrates. However, the in vivo function of Ppm1a in mammals remains unknown. Here we reported that mice lacking Ppm1a developed normally but were impaired in re-epithelialization process during cutaneous wound healing. Specifically, complete or keratinocyte-specific deletion of Ppm1a led to delayed re-epithelialization with reduced keratinocyte migration upon wounding. We showed that this effect was the result of an increase in Smad2/3 phosphorylation in keratinocytes. Keratinocyte-specific Smad2 deficient mice displayed accelerated re-epithelialization with enhanced keratinocyte migration. Importantly, Smad2 and Ppm1a double mutant mice also exhibited accelerated re-epithelialization, demonstrating that the effect of Ppm1a on promoting re-epithelialization is mediated by Smad2 signaling. Furthermore, the decreased expression of specific integrins and matrix metalloproteinases (MMPs) may contribute to the retarded re-epithelialization in Ppm1a mutant mice. These data indicate that Ppm1a, through suppressing Smad2 signaling, plays a critical role in re-epithelialization during wound healing.  相似文献   

4.
5.
Based on the well established involvement of IL-1beta in inflammatory hyperalgesia, we have assessed the possible role played by IL-1beta in a murine model of bone cancer-induced pain. With this aim, we measured IL-1beta levels at the region of the tibia and the spinal cord in mice bearing a tibial osteosarcoma induced by the inoculation of NCTC 2472 cells, and we tested whether the IL-1 receptor antagonist, anakinra, inhibits some hypernociceptive reactions evoked by the neoplastic injury. Parallel experiments were performed in mice with a chronic inflammatory process (intraplantar injection of complete Freund's adjuvant, CFA). IL-1beta levels were increased in the tibial region of osteosarcoma-bearing mice and in the paws of inflamed mice. To a lesser extent, the content of IL-1beta in the spinal cord was also augmented in both situations. Osteosarcoma-induced thermal hyperalgesia was inhibited by 30 and 100 mg/kg of systemic anakinra, but only 300 mg/kg prevented inflammatory thermal hyperalgesia. Mechanical hyperalgesia induced by the osteosarcoma was blocked by 100 and 300 mg/kg of anakinra, whereas a partial reversion of inflammatory mechanical hyperalgesia was induced by 300 mg/kg. Anakinra, intrathecally administered (1 and 10 microg) did not modify hyperalgesia of either origin. Besides, both tumoral and inflammatory mechanical allodynia remained unaltered after the administration of anakinra. In conclusion, some hyperalgesic symptoms observed in this model of bone cancer are mediated by the peripheral release of IL-1beta and may be inhibited by antagonists of type I IL-1 receptors with a similar or greater potency than symptoms produced by inflammation.  相似文献   

6.
7.
8.
Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids.  相似文献   

9.
White adipocytes have been examined as a potential source of interleukin-18 (IL-18), the circulating levels of which are increased in obesity. IL-18 gene expression was evident in human subcutaneous and visceral adipose tissue, and expression occurred in mature adipocytes and the stromal-vascular fraction. Expression of the IL-18 receptor complex (IL-18Ralpha and IL-18Rbeta) and the IL-18 binding protein (IL-18BP) genes was also observed, mirroring that of IL-18. IL-18 mRNA level increased rapidly (within 2h) and dramatically (>900-fold) in response to TNFalpha in human adipocytes differentiated in culture. IL-18 protein was detected in lysates of cultured adipocytes, though not in the medium. There was a small increase in IL-18 in lysates of adipocytes treated with TNFalpha, but the protein was again undetectable in the medium. IL-18 may be part of the inflammatory cascade within adipose tissue; however, human adipocytes do not appear to secrete significant amounts of IL-18.  相似文献   

10.
Structural changes of podocytes and retraction of their foot processes are a critical factor in the pathogenesis of minimal change nephritis and glomerulosclerosis. Here we tested, if connective tissue growth factor (CTGF) is involved in podocyte injury during acute and chronic puromycin aminonucleoside nephrosis (PAN) as animal models of minimal change nephritis, and focal segmental glomerulosclerosis, respectively. Rats were treated once (acute PAN) or for 13 weeks (chronic PAN). In both experimental conditions, CTGF and its mRNA were found to be highly upregulated in podocytes. The upregulation correlated with onset and duration of proteinuria in acute PAN, and glomerulosclerosis and high expression of glomerular fibronectin, and collagens I, III, and IV in chronic PAN. In vitro, treatment of podocytes with recombinant CTGF increased amount and density of actin stress fibers, the expression of actin-associated molecules such as podocalyxin, synaptopodin, ezrin, and actinin-4, and activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Moreover, we observed increased podocyte expression of mRNA for transforming growth factor (TGF)-β2, TGF-β receptor II, fibronectin, and collagens I, III, and IV. Treatment of cultured podocytes with puromycin aminonucleoside resulted in loss of actin stress fibers and cell death, effects that were partially prevented when CTGF was added to the culture medium. Depletion of CTGF mRNA in cultured podocytes by RNA interference reduced both the number of actin stress fibers and the expression of actin-associated molecules. We propose that the expression of CTGF is acutely upregulated in podocytes as part of a cellular attempt to repair structural changes of the actin cytoskeleton. When the damaging effects on podocyte structure and function persist chronically, continuous CTGF expression in podocytes is a critical factor that promotes progressive accumulation of glomerular extracellular matrix and glomerulosclerosis.  相似文献   

11.
During embryo implantation, trophinin mediates cell adhesion by homophilic binding at the apical surfaces of trophectoderm and endometrium. Trophinin is expressed on the human endometrial epithelia in rare occasions. We developed hCG-coated agarose beads that mimic the physical and physiological features of an implantation-stage human blastocyst. When hCG-coated beads were applied to human endometrial epithelial cells in the presence of IL-1beta, endometrial cells acquired strong trophinin expression and the ability for apical cell adhesion with trophinin-expressing human trophoblastic cells. These results provide a mechanism for trophinin-mediated adhesion of human blastocyst to endometrium by a spatially and temporally restricted paracrine effect of hCG derived from the blastocyst.  相似文献   

12.
13.
Aldose reductase family member B10 (AKR1B10) belongs to the aldo–keto reductase gene superfamily and is closely related to aldose reductase (AKR1B1). It has been shown that AKR1B10 is present in many of the same human tissues as AKR1B1. The objective of this study was to investigate whether AKR1B10 has a role in diabetic nephropathy (DN) by investigating its response to high glucose and inflammation, both of which have been associated with the development and progression of DN. Expression levels of AKR1B10 were determined in peripheral blood mononuclear cells (PBMCs) obtained from 25 patients with type 1 diabetes and nephropathy, 25 without DN and 25 normal healthy controls that were exposed to high glucose (25 mM d-glucose) and also the inflammatory stressor lipopolysaccharide (LPS, 10 μm). Under high glucose and LPS conditions, there was a significant increase in the expression of AKR1B10 in the PBMCs from patients with DN compared to those without DN and the normal controls. In conclusion, these results suggest that AKR1B10 may have an important role in the development and progression of DN.  相似文献   

14.
Modification of cytokine production by gender hormones has been postulated to affect disease susceptibility and outcome. Here we investigate the effect of gender and the menstrual cycle on production of cytokines. Mononuclear cells were isolated every week for 10 consecutive weeks from healthy pre-menopausal women and men. TNF and IL-10 mRNA and protein levels were measured as well as membrane CD14 and intracellular TLR4 protein. Endotoxin stimulation of mononuclear cells from men produced more TNF and IL10 mRNA than cells from women. TLR4 expression was also significantly higher in cells from men. These gender differences in the immune response may help to elucidate the sexual dimorphism observed in infectious diseases.  相似文献   

15.
Keratin 17 (K17) is a type I intermediate filament protein that is constitutively expressed in ectoderm-derived epithelial appendages and robustly induced in epidermis following injury, during inflammation, and in chronic diseases such as psoriasis and cancer. Mutations within K17 are responsible for two rare diseases related to ectodermal dysplasias. Studies in K17-null mice uncovered several roles for K17, including structural support, resistance to TNFα-induced apoptosis, regulation of protein synthesis, and modulation of cytokine expression. Yet, little is known about the regulation of K17 protein via post-translational modification. Here, we report that serine 44 in the N-terminal head domain of K17 (K17-Ser(44)) is phosphorylated in response to extracellular stimuli (serum, EGF, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate) that alter skin keratinocyte growth, and to cellular stresses (sorbitol-induced hyperosmotic shock, UV irradiation, and hydrogen peroxide-induced oxidative stress). It also occurs in basaloid skin tumors in situ. Upon its stimulation in skin keratinocytes, K17-Ser(44) phosphorylation is induced rapidly but stays on transiently. The majority of the phosphorylated K17-Ser(44) pool is polymer-bound and is not obviously related to a change in filament organization. The amino acid sequence surrounding K17-Ser(44) matches the consensus for the AGC family of basophilic kinases. We show that p90 RSK1, an AGC kinase involved in the regulation of cell survival and proliferation, phosphorylates K17-Ser(44) in skin keratinocytes. These findings confirm and expand the tight link that has emerged between K17 up-regulation and growth and stress responses in the skin epithelium.  相似文献   

16.
S100A8/9 and S100A12 are emerging biomarkers for disease activity of autoimmune and cardiovascular diseases. We demonstrated previously that S100A12 accelerates atherosclerosis accompanied by large cholesterol deposits in atherosclerotic lesions of apoE-null mice. The objective of this study was to ascertain whether S100/calgranulin influences cholesterol homeostasis in macrophages. Peritoneal macrophages from transgenic mice expressing human S100A8/9 and S100A12 in myeloid cells [human bacterial artificial chromosome (hBAC)/S100] have increased lipid content and reduced ABCG1 expression and [3H]cholesterol efflux compared with WT littermates. This was associated with a 6-fold increase in plasma interleukin (IL)-22 and increased IL-22 mRNA in splenic T cells. These findings are mediated by the receptor for advanced glycation endproducts (RAGE), because hBAC/S100 mice lacking RAGE had normal IL-22 expression and normal cholesterol efflux. In vitro, recombinant IL-22 reduced ABCG1 expression and [3H]cholesterol efflux in THP-1 macrophages, while recombinant S100A12 had no effect on ABCG1 expression. In conclusion, S100/calgranulin has no direct effect on cholesterol efflux in macrophages, but rather promotes the secretion of IL-22, which then directly reduces cholesterol efflux in macrophages by decreasing the expression of ABCG1.  相似文献   

17.
目的 探讨复方清下汤对脓毒症大鼠肺组织白介素-1(IL-1)及白介素-6(IL-6)基因表达的影响,进一步探讨其减轻肺损伤机制.方法 将健康SD大鼠随机分为4组,每组10只:假手术组(SHAM组),脓毒症肺损伤组(模型组),盲肠结扎穿孔+复方清下汤组,以及盲肠结扎穿孔+头孢哌酮舒巴坦(舒普深)组,造模24 h后收集标本.应用免疫组织化学和Westernblotting法检测肺组织中IL-1、IL-6的表达,RT-PCR检测肺组织上述蛋白mRNA表达.结果 与SHAM组比较,模型组IL-1、IL-6的mRNA转录水平和蛋白水平表达均显著升高(P<0.01);抗生素及中药处理组与模型组比较,IL-1、IL-6的表达明显降低(P<0.01),抗生素及中药处理组两组检测数据相近.结论 脓毒症大鼠肺损伤时细胞因子IL-1、IL-6过度表达可能是造成脓毒症肺损伤的重要原因;复方清下汤处理的动物模型肺损伤减轻的同时IL-1、IL-6表达变化,提示它可能通过调控IL-1、IL-6表达起作用.  相似文献   

18.
Chitin was found to induce matrix metalloproteinases (MMPs) activity in rat skin and subcutaneous tissue. Sponge type chitin (22.5 mg) was implanted in subcutaneous tissue of 8-week-old rats by skin incision. MMPs activity was more pronounced in the chitin-treated group than only incision group until on day 2.5 postoperatively. Gelatin zymography revealed that the induced MMPs had a molecular mass of 92 and 82 kDa corresponding to MMP-9 and pro MMP-9, respectively. We here discuss the mechanism of MMP induction by chitin.  相似文献   

19.
20.
The property of 109 CD4+ T cell clones (TCC) to induce IgE synthesis in vitro in human B cells was compared with their ability to produce IL-2, IL-4, and IFN-gamma in their supernatants (SUP) after 24-h stimulation with PHA. A significant positive correlation was found between the property of TCC to induce or enhance spontaneous IgE synthesis and their ability to release IL-4. In contrast, there was an inverse relationship between the IgE helper activity of TCC and their ability to release IFN-gamma, whereas no statistical correlation between the property to induce IgE synthesis and to produce IL-2 was observed. The ability of PHA-SUP from 71 CD4+ TCC to induce IgE synthesis in B cells was also investigated. Twenty-nine SUP (all derived from TCC active on IgE synthesis) induced production of substantial amounts of IgE in target B cells. There was a correlation between the amount of IgE synthesized by B cells in response to these SUP and their IL-4 content. An even higher correlation was found between the IgE synthesis induced by these SUP and the ratio between the amount of IL-4 and IFN-gamma present in the same SUP. Like IL-4-containing SUP, rIL-4 also showed the ability to induce IgE production in B cells from both atopic and nonatopic donors. The addition to B cell cultures of anti-IL-4 antibody virtually abolished not only the IgE synthesis induced by rIL-4, but also that stimulated by TCC and their SUP. In contrast, the IgG synthesis induced by TCC SUP was not or only slightly inhibited by the anti-IL-4 antibody. These data indicate that IL-4 is an essential mediator for the IgE synthesis induced in vitro by human TCC and their SUP in the absence of a polyclonal activator, whereas IFN-gamma seems to exert a negative regulatory effect on the production of IgE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号