首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroalkene derivatives of linoleic acid (LNO2) and oleic acid (OA-NO2) are present; however, their biological functions remain to be fully defined. Herein, we report that LNO2 and OA-NO2 inhibit lipopolysaccharide-induced secretion of proinflammatory cytokines in macrophages independent of nitric oxide formation, peroxisome proliferator-activated receptor-gamma activation, or induction of heme oxygenase-1 expression. The electrophilic nature of fatty acid nitroalkene derivatives resulted in alkylation of recombinant NF-kappaB p65 protein in vitro and a similar reaction with p65 in intact macrophages. The nitroalkylation of p65 by fatty acid nitroalkene derivatives inhibited DNA binding activity and repressed NF-kappaB-dependent target gene expression. Moreover, nitroalkenes inhibited endothelial tumor necrosis factor-alpha-induced vascular cell adhesion molecule 1 expression and monocyte rolling and adhesion. These observations indicate that nitroalkenes such as LNO2 and OA-NO2, derived from reactions of unsaturated fatty acids and oxides of nitrogen, are a class of endogenous anti-inflammatory mediators.  相似文献   

2.
Matrix metalloproteases (MMPs) are Zn-containing endopeptidases involved in the degradation of extracellular matrix components and are typically secreted in a latent (pro-MMP) form and activated either by proteolytic or oxidative disruption of a conserved cysteine switch. Several recent studies have suggested that nitric oxide (NO) can contribute to the activation of MMPs, but the mechanisms involved are incompletely understood. We investigated the ability of NO to regulate the activation of (pro)MMP-9 using a variety of NO-donor compounds and characterized modifications of the cysteine switch using a synthetic peptide (PRCGVPDLGR) representing the cysteine switch domain of MMP-9. Among the NO-donors used, only S-nitrosocysteine (SNOC) was found to be capable of modest activation of proMMP-9, but S-nitrosoglutathione (GSNO) or the NONOates, DEA-NO, SPER-NO, or DETA-NO, were ineffective. In fact, high concentrations of DETA-NO were found to inhibit MMP-9 activity, presumably by direct interaction with the active-site Zn (2+). Analysis of chemical modifications within the Cys-containing peptide, PRCGVPDLGR, revealed rapid and transient S-nitrosylation by SNOC and GSNO, and formation of mixed disulfides and dimerized peptide as major final products. Similarly, NONOates induced transient S-nitrosylation and primarily peptide dimerization. Coordination of the peptide Cys with a synthetic Zn (2+) complex, to more closely mimic the structure of the active site in proMMP-9, reduced peptide nitrosylation and oxidation by NONOates, but enhanced peptide nitrosylation by SNOC and GSNO. Collectively, our results demonstrate that NO is incapable of directly activating proMMP-9 and that S-nitrosylation of MMP-9 propeptide by NO-donors is unrelated to their ability to regulate MMP-9 activity.  相似文献   

3.
4.
Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids. Nitrated palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids were detected in concert with their nitrohydroxy derivatives. Two nitroalkene derivatives of the most prevalent fatty acid, oleic acid, were synthesized (9- and 10-nitro-9-cis-octadecenoic acid; OA-NO2), structurally characterized and determined to be identical to OA-NO2 found in plasma, red cells, and urine of healthy humans. These regioisomers of OA-NO2 were quantified in clinical samples using 13C isotope dilution. Plasma free and esterified OA-NO2 concentrations were 619 +/- 52 and 302 +/- 369 nm, respectively, and packed red blood cell free and esterified OA-NO2 was 59 +/- 11 and 155 +/- 65 nm. The OA-NO2 concentration of blood is approximately 50% greater than that of nitrated linoleic acid, with the combined free and esterified blood levels of these two fatty acid derivatives exceeding 1 microm. OA-NO2 is a potent ligand for peroxisome proliferator activated receptors at physiological concentrations. CV-1 cells co-transfected with the luciferase gene under peroxisome proliferator-activated receptor (PPAR) response element regulation, in concert with PPARgamma, PPARalpha, or PPARdelta expression plasmids, showed dose-dependent activation of all PPARs by OA-NO2. PPARgamma showed the greatest response, with significant activation at 100 nm, while PPARalpha and PPARdelta were activated at approximately 300 nm OA-NO2. OA-NO2 also induced PPAR gamma-dependent adipogenesis and deoxyglucose uptake in 3T3-L1 preadipocytes at a potency exceeding nitrolinoleic acid and rivaling synthetic thiazo-lidinediones. These data reveal that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.  相似文献   

5.
6.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

7.
《Bioscience Hypotheses》2008,1(6):292-294
Apolipoprotein AV (apoAV) is a negative modulator of triglyceride metabolism, and the APOAV gene is upregulated by peroxisome proliferator-activated receptor-α (PPAR-α). Interestingly, statins have triglyceride-lowering effect and other anti-atherosclerotic effects, which may involve in the activation of PPAR-α expression. Therefore, it is plausible that statins could decrease plasma triglyceride levels by increasing APOAV expression via a PPAR-α activated pathway.  相似文献   

8.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

9.
Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.  相似文献   

10.
Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2 )-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2 under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet.  相似文献   

11.
Increased levels of the physiological amino acid homocysteine (Hcy) are considered a risk factor for vascular disease. Hyperhomocysteinemia causes an intense remodelling of the extracellular matrix in arterial walls, particularly an elastolysis involving metalloproteinases. We investigated the activation of the latent elastolytic metalloproteinase proMMP-2 (72 kDa) by Hcy. Hcy was proved to exert a dual effect, activating proMMP-2 at low molar ratio (MR 10:1) and inhibiting active MMP2 at high molar ratio (MR > 1000:1). Methionine and the disulphide homocystine did not activate nor inhibit MMP-2, showing that the activation as well as the inhibition requires the thiol group to be free. The activation of proMMP-2 by Hcy is in accordance with the "cysteine-switch" mechanism, but occurs without further autoproteolysis of the enzyme molecule. In contrast with Hcy, the other physiological thiol compounds cysteine and reduced glutathione did not activate proMMP-2. These results suggest that the direct activation of proMMP2 by Hcy could be one of the mechanisms involved in the extracellular matrix deterioration in hyperhomocysteinemia-associated arteriosclerosis.  相似文献   

12.
The signaling mediators nitric oxide (˙NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond coregulation of ˙NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ˙NO, reacting with cellular nucleophiles to posttranslationally modify protein structure, function, and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator-activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes, and relaxation of preconstricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates.  相似文献   

13.
We investigated the role of TGF-β1 and TNF-α in mediating the effect of IL-1β in activating proMMP-9 and proMMP-2, and the involvement of an aprotinin sensitive protease in this scenario in bovine pulmonary artery smooth muscle cells. IL-1β induces TGF-β1 mediated stimulation of 92 kDa proMMP-9 and 72 kDa proMMP-2 mRNA and protein expression; whereas, the elevated level of TNF-α promotes activation of proMMP-9 and proMMP-2. Interestingly, TNF-α induced activation of proMMP-9 appeared to be mediated via a 43 kDa aprotinin sensitive protease. TNF-α inhibited aprotinin and TIMP-1 mRNA and protein expression, which apparently facilitated the proteolytic conversion of proMMP-9 to MMP-9 with the involvement of the aprotinin sensitive protease. The aprotinin sensitive protease did not activate proMMP-2 under IL-1β stimulation, albeit a marked inhibition of TIMP-2 mRNA and protein expression were elicited by TNF-α. Thus, IL-1β induced stimulation of the two progelatinases occurs via different mechanisms.  相似文献   

14.
Myeloperoxidase uses hydrogen peroxide (H2O2) to generate hypochlorous acid (HOCl), a potent cytotoxic oxidant. We demonstrate that HOCl regulates the activity of matrix metalloproteinase-7 (MMP-7, matrilysin) in vitro, suggesting that this oxidant activates MMPs in the artery wall. Indeed, both MMP-7 and myeloperoxidase were colocalized to lipid-laden macrophages in human atherosclerotic lesions. A highly conserved domain called the cysteine switch has been proposed to regulate MMP activity. When we exposed a synthetic peptide that mimicked the cysteine switch to HOCl, HPLC analysis showed that the thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as sulfinic acid, sulfonic acid, and a dimer containing a disulfide bridge. In contrast, the peptide reacted slowly with H2O2, and the only product was the disulfide. Moreover, HOCl markedly activated pro-MMP-7, an MMP expressed at high levels in lipid-laden macrophages in vivo. Tandem mass spectrometric analysis of trypsin digests revealed that the thiol residue of the enzyme's cysteine switch domain had been converted to sulfinic acid. Thiol oxidation was associated with autolytic cleavage of pro-MMP-7, strongly suggesting that oxygenation activates the latent enzyme. In contrast, H2O2 failed to oxidize the thiol residue of the protein or activate the enzyme. Thus, HOCl activates pro-MMP-7 by converting the thiol residue of the cysteine switch to sulfinic acid. This activation mechanism is distinct from the well-studied proteolytic cleavage of MMP pro-enzymes. Our observations raise the possibility that HOCl generated by myeloperoxidase contributes to MMP activation, and therefore to plaque rupture, in the artery wall. HOCl and other oxidants might regulate MMP activity by the same mechanism in a variety of inflammatory conditions.  相似文献   

15.
Reactive oxygen species (ROS) have been implicated in the regulation of matrix metalloproteinases (MMPs). The xanthine/xanthine oxidase (X/XO) reaction has been widely used as a source of exogenous ROS in studying MMPs, but commercial XO has also been known to be contaminated by proteolytic activity, and MMPs are protease sensitive substrate. We have investigated the activation of proMMP-2 by X/XO in cultured vascular smooth muscle cells (SMCs). SMCs were incubated with X/XO (unpurified or purified) or XO alone for 24h. X/XO activated proMMP-2 in a dose-dependent manner. A similar profile was observed using XO. Purified XO produced lower amounts of active MMP-2 compared to unpurified XO. EPR study showed that X/XO, not XO itself, produced superoxide anion, which was completely scavenged by SOD. However, X/XO-induced proMMP-2 activation could not be inhibited by combination of SOD and catalase. Incubation with XO either in cell-free conditioned media or in cells resulted in similar amounts of active MMP-2, suggesting that membrane-type-MMPs were not involved in proMMP-2 activation. This was further confirmed by the lack of inhibitory effect of hydroxamate MMP inhibitor, BB1101. Aprotinin blocked unpurified XO-induced proMMP-2 activation in a dose-dependent manner, demonstrating the proteolytic activity contained in XO is essential. We conclude that proteolytic activity contained in XO, rather the ROS derived from X/XO, is responsible for proMMP-2 activation in cultured SMCs. The results also suggest that caution needs to be taken when interpreting the reported results on activation of MMPs where X/XO had been used as an "authentic" source of superoxide anion.  相似文献   

16.
Thrombospondins are thought to function as inhibitors of angiogenesis. However, the mechanism(s) of this activity is not well understood. In this study, we have used the yeast two-hybrid system to identify proteins that interact with the thrombospondins 1 (TSP1) and 2 (TSP2) properdin-like type 1 repeats (TSR). One of the proteins identified that interacted with both TSR was matrix metalloproteinase 2 (MMP2). The isolated MMP2 cDNA clone encoded amino acid residues 237-633, which include the fibronectin-like gelatin binding region flanking the catalytic center and the carboxyl hemopexin-like region. Further testing of this clone demonstrated that the TSR interacted with the NH(2)-terminal region of the MMP2 that contains the catalytic domain. The protein interaction observed in yeast was further demonstrated by immunoprecipitation and Western blotting using purified intact TSP1, TSP2, MMP2, and MMP9. Although MMP2 interacted with TSP1 and TSP2 via its gelatin-binding domain or a closely mapping site, neither TSP1 nor TSP2 was degraded by MMP2 in vitro. Tissue culture and in vitro assays demonstrated that the presence of purified TSR and intact TSP1 resulted in inhibition of MMP activity. The ability of TSP1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin-induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by preventing activation of the MMP2 and MMP9 zymogens.  相似文献   

17.
18.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

19.
Nitric oxide (NO), a gaseous free radical that is synthesized in organisms by nitric oxide synthases, participates in a critical fashion in the regulation of diverse physiological functions such as vascular and neuronal signal transduction, host defense, and cell death regulation. Two major pathways of NO signaling involve production of the second messenger guanosine 3′,5′-cyclic monophosphate (cGMP) and posttranslational modification (PTM) of redox-sensitive cysteine thiols of proteins. We recently clarified the physiological formation of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP) as the first demonstration, since the discovery of cGMP more than 40 years ago, of a new second messenger derived from cGMP in mammals. 8-Nitro-cGMP is electrophilic and reacts efficiently with sulfhydryls of proteins to produce a novel PTM via cGMP adduction, a process that we named protein S-guanylation. 8-Nitro-cGMP may regulate electrophilic signaling on the basis of its electrophilicity through induction of S-guanylation of redox sensor proteins. Examples include S-guanylation of the redox sensor protein Kelch-like ECH-associated protein 1 (Keap1), which leads to activation of NF-E2-related factor 2 (Nrf2)-dependent expression of antioxidant and cytoprotective genes. This S-guanylation-mediated activation of an antioxidant adaptive response may play an important role in cytoprotection during bacterial infections and oxidative stress. Identification of new redox-sensitive proteins as targets for S-guanylation may help development of novel therapeutics for oxidative stress- and inflammation-related disorders and vascular diseases as well as understanding of cellular protection against oxidative stress.  相似文献   

20.
Matrix metalloproteinases (MMPs) are a class of extracellular and membrane-bound proteases involved in an array of physiological processes, including angiogenesis. We present a detailed computational model of MMP9 activation and inhibition. Our model is validated to existing biochemical experimental data. We determine kinetic rate constants for the processes of MMP9 activation by MMP3, MMP10, MMP13, and trypsin; inhibition by the tissue inhibitors of metalloproteinases (TIMPs) 1 and 2; and MMP9 deactivation. This computational approach allows us to investigate discrepancies in our understanding of the interaction of MMP9 with TIMP1. Specifically, we find that inhibition due to a single binding event cannot describe MMP9 inhibition by TIMP1. Temporally accurate biphasic inhibition requires either an additional isomerization step or a second lower affinity isoform of MMP9. We also theoretically characterize the MMP3/TIMP2/pro-MMP9 and MMP3/TIMP1/pro-MMP9 systems. We speculate that these systems differ significantly in their time scales of activation and inhibition such that MMP9 is able to temporarily overshoot its final equilibrium value in the latter. Our numerical simulations suggest that the ability of pro-MMP9 to complex TIMP1 increases this overshoot. In all, our analysis serves as a summary of existing kinetic data for MMP9 and a foundation for future models utilizing MMP9 or other MMPs under physiologically well defined microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号