首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We designed three experiments to investigate the relationship between FSH peaks and ovarian follicular waves and to examine whether an endogenous rhythm of FSH peaks exists in sheep. In experiment 1, anestrous ewes were treated with ovine FSH (oFSH) or vehicle (6 ewes per group) at the expected time of an endogenous FSH peak, to double the FSH-peak amplitude in treated ewes. In experiment 2, anestrous ewes were treated with either oFSH or vehicle (6 ewes per group) at the expected time of two consecutive interpeak nadirs, such that the treated ewes had 5 FSH peaks in the time frame of 3 FSH peaks in control ewes. In experiment 3, to measure FSH concentrations, daily blood samples were collected from 5 cyclic ewes for a control period during the estrous cycle and then for three 17-day periods after ovariectomy. Daily blood samples were collected from another group of 8 ovariectomized ewes that were treated with estradiol-releasing implants and intravaginal progestogen sponges. Doubling the FSH-peak amplitude did not alter the characteristics of the following follicular wave. Increasing the frequency of FSH peaks stimulated the emergence of additional follicular waves, but did not alter the rhythmic occurrence of FSH peaks and follicular wave emergence. Endogenous follicular waves in oFSH-treated ewes emerged and grew in the presence of the growing largest follicle of the induced follicular waves. Finally, based on the observation of serum FSH concentrations in ovariectomized ewes, it appears that there exists an endogenous rhythm for peaks in daily serum FSH concentrations, which is, at least in part, independent of regulation by ovarian follicular growth patterns.  相似文献   

2.
In the ewe, ovarian follicular waves emerge every 4 to 5 days and are preceded by a peak in FSH secretion. It is unclear whether large antral follicle(s) in a wave suppress the growth of other smaller follicles during the inter-wave interval, as is seen in cattle. In this study, anestrous (n = 6; experiment 1) and cyclic (n = 5; experiment 2) Western white face ewes were given ovine FSH (oFSH) (0.5 microg/kg; two s.c. injections, 8 h apart) during the growth phase (based on ultrasonography) of a follicular wave (wave 1). Control ewes (n = 5 and 6, respectively) received vehicle. In oFSH-treated ewes, serum FSH concentrations reached a peak (P < 0.05) by 12 h after oFSH treatment, and this induced FSH peak did not differ (P > 0.05) from the endogenous FSH peaks. In all ewes, emergence of follicular waves 1 and 2 was seen (P > 0.05). However, in oFSH-treated ewes, an additional follicular wave emerged approximately 0.5 days after treatment: during the interwave interval of waves 1 and 2 without delaying the emergence of wave 2. The growth characteristics and serum estradiol concentrations did not differ (P > 0.05) between oFSH-induced waves and waves induced by endogenous FSH peaks. We concluded that, unlike in cattle, the largest follicle of a wave in sheep has limited direct effect on the growth of other follicles induced by exogenous oFSH. In addition, the largest follicle of a wave may possibly not influence the rhythmicity of follicular wave emergence, as it does in cattle.  相似文献   

3.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

4.
Transrectal ovarian ultrasonography was conducted in six Western white-faced ewes for 35 days from the last oestrus of the breeding season, to record the number and size of all ovarian follicles > or = 3 mm in diameter and luteal structures. Blood samples were collected once a day for estimation of serum concentrations of follicle-stimulating hormone (FSH), oestradiol and progesterone. Each ewe had five follicular waves (follicles growing from 3 to > or = 5 mm in diameter) over the scanning period. The duration of the growth phase of the largest ovarian follicles did not differ (P > 0.05) between waves, but follicular static and regressing phases decreased significantly (P < 0.05) after the decline in serum progesterone concentrations at the end of the last luteal phase of the breeding season. The intervals between the five follicular waves were: 9.2+/-0.4, 5.2+/-0.7, 8.3+/-0.8 and 5.8+/-0.7 days; the two shorter intervals differed (P < 0.05) from the two longer intervals. Using the cycle-detection program, rhythmic increases in serum FSH concentrations were detected in all ewes; the amplitude, duration and periodicity of FSH fluctuations did not vary (P > 0.05) throughout the period of study. The number of identified FSH peaks (7.8+/-0.5 peaks per ewe, per scanning period) was greater (P < 0.05) than the number of emerging follicular waves. Serum concentrations of oestradiol remained low (< or = 1 pg/ml) on most days, in five out of the six ewes studied, and sporadic elevations in oestradiol secretion above the non-detectable level were not associated with the emergence of follicular waves. The ovulation rate was lower than that seen during the middle portion of the breeding season (November-December) in white-faced ewes but the transitional ewes had larger corpora lutea (CL). Maximal serum concentrations of progesterone appeared to be lower and the plateau phase of progesterone secretion appeared to be shorter during the last luteal phase of the ovulatory season in comparison to the mid-breeding season of Western white-faced ewes. During the transition into anoestrus in ewes, the endogenous rhythm of FSH release is remarkably robust but the pattern of emergence of sequential follicular waves is dissociated from FSH and oestradiol secretion. Luteal progesterone secretion is suppressed because of fewer ovulations and diminished total luteal volume, but it may also result from diminished gonadotropic support. These season-related alterations in the normal pattern of ovine ovarian cycles appear to be due to reduction in ovarian responsiveness to gonadotropins and/or attenuation in secretion of luteinizing hormone (LH) occurring at the onset of the anovulatory season in ewes.  相似文献   

5.
There are three or four ovarian follicular waves in the interovulatory interval of cyclic ewes. Each follicular wave is preceded by a transient peak in serum follicle-stimulating hormone (FSH) concentrations. Serum concentrations of estradiol also increase concurrent with the growth of follicle(s) in each wave. In the current study, we investigated the patterns of follicular wave development and characteristics of FSH and estradiol peaks in all follicular waves of the interovulatory interval and after induction of a supraphysiologic FSH peak in cyclic ewes (Ovis aris). In Experiment 1, 19 ewes underwent daily ovarian ultrasonography and blood sampling for a complete interovulatory interval. In Experiment 2, seven ewes received two administrations of ovine FSH (oFSH), 8 h apart (1 μg/kg; sc), at the expected time of the endogenous FSH peak preceding the second follicular wave of the interovulatory interval. In Experiment 1, the amplitude of the FSH peaks decreased (up to 50%), whereas basal serum FSH concentrations increased across the interovulatory interval (P < 0.05). Maximum follicular diameter was greater (P < 0.05) for Wave 1 and the Ovulatory wave (6.0 ± 0.3 and 6.1 ± 0.2 mm, respectively) than for Waves 2 and 3 (5.3 ± 0.1 and 5.4 ± 0.3 mm, respectively). Life span was greater for follicles in Wave 1 compared with other waves (P < 0.05). Treatment with oFSH increased the amplitude of an FSH peak by 5- to 6-fold. This treatment increased estradiol production (P < 0.05) but had little effect on other characteristics of the subsequent follicular wave. We concluded that changes in the amplitude and duration of the peaks in serum concentrations of FSH that precede follicular waves across the interovulatory interval do not influence the characteristics of the follicular waves that follow.  相似文献   

6.
Folliculogenesis was studied daily in the 18 oestrous cycles in six prolific Olkuska ewes from October to December using transrectal ultrasonography to record the number and size of all ovarian follicles > or =2 mm in diameter. Blood samples were taken once a day and were analyzed for concentrations of FSH, LH, estradiol and progesterone. Follicular and hormonal data were analyzed for associations between different stages of development of the follicular waves and concentrations of FSH and estradiol. The first wave during which at least one follicle reached maximum diameter of > or =4 mm after ovulation, was defined as a wave 1, and the following waves were numbered sequentially. Waves 1, 2, 3, 4 and the ovulatory one emerged on days: -2 to 4, 4 to 8, 6 to 11, 10 to 12 and 11 to 15, respectively. The mean number of follicles per wave that reached diameter of > or =4 mm was 4.15 +/- 1.1 and 16.62 +/- 8.6 follicles per estrous cycle of a total 299 follicles were observed. Significantly more follicles (p> or =0.05) emerged on days 2, 8 and 13 than in other days. Serum FSH concentrations fluctuated from 0.11 ngml(-1) on day 2 to preovulatory maximum 1.81 ngml(-1) on day 17 of the estrous cycle. The emergence of follicular waves was associated with elevations of FSH concentrations in blood serum. The mean increase in FSH concentration was followed by the recruitment of follicles of the next wave. The mean daily FSH concentration and the mean number of follicles emerging each day were negatively correlated. The length of the interwave interval (4.4 +/- 1.6 days) did not differ significantly from the interval between pulses of FSH (4.8 +/- 0.3 days). The mean serum estradiol concentrations showed fluctuations until day 14 and then gradually increased from 5.47 +/- 0.3 pgml(-1) to reach a peak 13.14 +/- 0.2 pgml(-1) on the day before ovulation. To summarize, the growth of ovarian follicles during the estrous cycle in high fecundity Olkuska sheep exhibited a distinct wave-like pattern. Ovarian follicles emerged from the pool of 2 mm follicles. The preovulatory follicles originated from the large follicle population were present in the ovary at the time of luteal regression. The initial stages of the growth of the largest follicles appears to be controlled primarily by increases in FSH secretion.  相似文献   

7.
A standard dose of 500 IU of eCG is commonly given to progestogen pre-treated anestrous ewes for induction of estrus. Twelve seasonally anestrous and 12 cyclic Western White Face ewes were treated for 12 days with intravaginal sponges impregnated with medroxyprogesterone acetate (MAP). In trials in both the breeding and nonbreeding seasons, six randomly selected ewes were given 500 IU of eCG at sponge removal to determine the effects of low dose of eCG on ovarian antral follicular dynamics and ovulation. Ultrasound scanning and blood sampling were done daily. Treatment with eCG did not have marked effects on antral follicular growth. All ewes ovulated, except for five of six control anestrous ewes. Luteal structures and progesterone secretion were confirmed in all but the control anestrous ewes. In the breeding season, peak progesterone concentrations were greater (P<0.05) in eCG-treated compared to control ewes. Daily serum estradiol concentrations were greater in the periovulatory period in eCG-treated compared to control ewes (treatment-by-day interaction; P<0.05), particularly in anestrus. Progestogen-treated ewes ovulated follicles from several follicular waves, in contrast to ovulations of follicles from the final wave of the cycle in untreated, cyclic ewes. Anestrous ewes exhibited more frequent follicular waves and FSH peaks compared to cyclic ewes after a progestogen/eCG treatment. In conclusion, 500 IU of eCG given after 12 days of progestogen treatment had limited effects on the dynamics of ovarian follicular waves. However, eCG treatment increased serum concentrations of estradiol during the periovulatory period, particularly in anestrous ewes; this probably resulted in the synchronous estrus and ovulation in anestrous ewes.  相似文献   

8.
To characterize the pulsatile secretion of LH and FSH and their relationships with various stages of follicular wave development (follicles growing from 3 to > or =5 mm) and formation of corpora lutea (CL), 6 Western white-faced ewes underwent ovarian ultrasonography and intensive blood sampling (every 12 min for 6 h) each day, for 10 and 8 consecutive days, commencing 1 and 2 d after estrus, respectively. Basal serum concentrations of LH and LH pulse frequency declined, whereas LH pulse duration and FSH pulse frequency increased by Day 7 after ovulation (P<0.05). LH pulse amplitude increased (P<0.05) at the end of the growth phase of the largest ovarian follicles in the first follicular wave of the cycle. The amplitude and duration of LH pulses rose (P<0.05) 1 d after CL detection. Mean and basal serum FSH concentrations increased (P<0.05) on the day of emergence of the second follicular wave, and also at the beginning of the static phase of the largest ovarian follicles in the first follicular wave of the cycle. FSH pulse frequency increased (P<0.05) during the growth phase of emergent follicles in the second follicle wave. The detection of CL was associated with a transient decrease in mean and basal serum concentrations of FSH (P<0.05), and it was followed by a transient decline in FSH pulse frequency (P<0.05). These results indicate that LH secretion during the luteal phase of the sheep estrous cycle reflects primarily the stage of development of the CL, and only a rise in LH pulse amplitude may be linked to the end of the growth phase of the largest follicles of waves. Increases in mean and basal serum concentrations of FSH are tightly coupled with the days of follicular wave emergence, and they also coincide with the end of the growth phase of the largest follicles in a previous wave, but FSH pulse frequency increases during the follicle growth phase, especially at mid-cycle.  相似文献   

9.
The aim of the present study was to investigate the temporal relationship between the secretory pattern of serum LH and FSH concentrations and waves of ovarian antral follicles during the luteal phase of the estrous cycle in sheep. The growth pattern of ovarian antral follicles and CL were monitored by transrectal ultrasonography and gonadotropin concentrations were measured in blood samples collected every 12 min for 6 h/d from 7 to 14 d after ovulation. There were two follicular waves (penultimate and final waves of the cycle) emerging and growing during the period of intensive blood sampling. Mean and basal LH concentrations and LH pulse frequency increased (P < 0.001) with decreasing progesterone concentration at the end of the cycle. Mean and basal FSH concentrations reached a peak (P < 0.01) on the day of follicular wave emergence before declining to a nadir by 2 d after emergence. None of the parameters of pulsatile LH secretion varied significantly with either the emergence of the final follicular wave or with the end of the growth phase of the largest follicle of the penultimate wave of the cycle. However, mean and basal LH concentrations did increase (P < 0.05) after the end of the growth phase of the largest follicle of the final follicular wave of the cycle. Furthermore, the end of the growth phase of the largest follicle of the final wave coincided with functional luteolysis. In summary, there was no abrupt or short-term change in pulsatile LH secretion in association with the emergence or growth of the largest follicle of a wave. We concluded that the emergence and growth of ovarian antral follicles in follicular waves do not require changes in LH secretion, but may involve changes in sensitivity of ovarian follicles to serum LH concentrations.  相似文献   

10.
In a previous study, 10-day estradiol implant treatment truncated the FSH peaks that precede follicular waves in sheep, but subsequent ovine FSH (oFSH) injection reinitiated wave emergence. The present study's objectives were to examine the effects of a 20-day estradiol and progesterone treatment on FSH peaks, follicle waves, and responsiveness to oFSH injection. Also, different estradiol doses were given to see whether a model that differentially suppressed FSH peaks, LH pulses, or basal gonadotropin secretion could be produced in order to study effects of these changes on follicular dynamics. Mean estradiol concentrations were 11.8 +/- 0.4 pg/ml, FSH peaks were truncated, wave emergence was halted, and the number of small follicles (2-3 mm in diameter) was reduced (P < 0.05) in cyclic ewes given estradiol and progesterone implants (experiment 1). On Day 15 of treatment, oFSH injection failed to induce wave emergence. With three different estradiol implant sizes (experiment 2), estradiol concentrations were 5.2, 19.0, 27.5, and 34.8 (+/-4.6) pg/ml in control and treated ewes, respectively. All estradiol treatments truncated FSH peaks, except those that created the highest estradiol concentrations. Experiment 2-treated ewes had significantly reduced mean and basal FSH concentrations and LH pulse amplitude and frequency. We concluded that 20-day estradiol treatment truncated FSH peaks, blocking wave emergence, and reduced the small-follicle pool, rendering the ovary unresponsive to oFSH injection in terms of wave emergence. Varying the steroid treatment created differential FSH peak regulation compared with other gonadotropin secretory parameters. This provides a useful model for future studies of the endocrine regulation of ovine antral follicular dynamics.  相似文献   

11.
The mechanisms of ovulatory compensation following unilateral ovariectomy (ULO) are still not understood. In the present study, we investigated the short- and long-term effects of ULO in sheep using transrectal ovarian ultrasonography and hormone estimations made during the estrous cycle in which surgery was done, the estrous cycle 2 mo after surgery, and the 17-day period during the subsequent anestrus. The ULOs were done when a follicle in the first follicular wave of the cycle reached a diameter > or =5 mm, leaving at least one corpus luteum and one ovulatory-sized follicle in the remaining ovary. Ovulation rate per ewe was 50% higher in the ULO ewes compared with the control ewes at the end of the cycle during which surgery was performed, but it did not differ between groups at the end of the cycle, 2 mo later. This compensation of ovulation rate in ULO ewes was due to ovulation of follicles from the penultimate follicular wave in addition to those from the final wave of the cycle. Ovulation from multiple follicular waves appeared to be due to a prolongation of the static phase of the largest follicle of the penultimate wave of the cycle. Interestingly, the length of the static phase of waves was prolonged in ULO ewes compared with control ewes in every instance where the length of the static phase could be determined. Changes in follicular dynamics due to ULO were not associated with alterations in FSH and LH secretion. In conclusion, ovulatory compensation in ULO sheep involves ovulation from multiple follicular waves due to the lengthened static phase of ovulatory-sized follicles. These altered antral follicular dynamics do not appear to be FSH or LH dependent. Further studies are required to examine the potential role of the nervous system in the enhancement of the life span of the ovulatory-sized follicles leading to ovulatory compensation by the unpaired ovary in ULO sheep.  相似文献   

12.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

13.
The circulating concentrations of progesterone, FSH, and follistatin across the estrous cycle and gestation were compared in Australian merino sheep that were homozygous for the Booroola gene, FecB, or were noncarriers. The Booroola phenotype is due to a point mutation in the bone morphogenetic protein receptor 1B. Progesterone concentrations began to rise earlier and were higher in the Booroola ewes than in the noncarriers on most days of the luteal phase but not during the follicular phase of the cycle. Follistatin concentrations remained unchanged across the estrous cycle in both groups of ewes, with no differences between genotypes. FSH concentrations were higher in Booroola ewes than in noncarrier ewes on most days of the estrous cycle, with a significantly higher and broader peak of FSH around the time of estrus. Progesterone concentrations were significantly higher in early and midgestation in Booroola ewes but were lower toward the end of gestation than those in noncarriers. FSH declined in both groups across gestation, with lower concentrations of FSH in Booroola ewes during midgestation. Follistatin remained unchanged across gestation in Booroola ewes and noncarrier ewes with a twin pregnancy but declined across gestation in noncarrier ewes with a singleton pregnancy. These results suggest that follistatin concentration is not regulated by the FecB gene during the estrous cycle and pregnancy but is influenced by the number of fetuses. However, the FecB gene appears to positively affect both progesterone and FSH during the estrous cycle and across pregnancy, which suggests that bone morphogenetic proteins play an important role in the regulation of both hormones.  相似文献   

14.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

15.
The objective of this experiment was to assess the relationship between electrical resistance of the vaginal mucosa and serum concentrations of estradiol (E2) and progesterone (P4) during the estrous cycle in ewes. Vaginal impedance was recorded daily using a 2-electrode impedometer in 10 nonprolific Western white-faced and 7 prolific Finn ewes, during the mid-breeding season (October to December). Transrectal ultrasonography of ovaries was performed once a day to confirm ovulation and monitor follicle growth (follicles > or =3 mm in diameter) and development of corpora lutea (CL). Jugular blood samples were collected daily for radioimmunoassay (RIA) of estradiol and progesterone. In all ewes, a decline in vaginal impedance (to <40 ohms) was closely associated with the onset of behavioral estrus. In both breeds of sheep, there was no significant correlation between daily serum concentrations of estradiol and vaginal impedance throughout the estrous cycle. Daily serum concentrations of progesterone and the E2:P4 ratio were correlated with vaginal impedance during the period of luteolysis and follicular phase in both breeds (Western white-faced ewes: r = 0.62, P = 0.0002 and r = -0.56, P = 0.0002; Finn ewes: r = 0.61, P = 0.001 and r = -0.45, P = 0.03, respectively) and early in the cycle (Days 0 to 2, Day 0 = day of ovulation) in white-faced ewes (r = 0.61, P = 0.0003 and r = -0.36, P = 0.052, respectively) but not during the remaining portion of the luteal phase in either breed. In conclusion, vaginal mucous impedance appears to be primarily controlled by progesterone, but it also changes in response to shifts in the E2:P4 ratio when progesterone concentrations are low. Impedometric characteristics of the vaginal mucosa in cyclic ewes are an indicator of serum concentrations of progesterone and E2:P4 ratios during the terminal stage of the estrous cycle.  相似文献   

16.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The reproductive tracts of 13 mature hinds were examined daily by transrectal ultrasonography and blood samples were taken daily from October to January to characterize follicular, luteal, and endocrine dynamics in wapiti during the estrous season. Follicle development occurred in waves characterized by regular, synchronous development of a group of follicles in temporal succession to a surge in serum FSH concentration. The mean interovulatory interval was 21.3 +/- 0.1 d, but was shorter in hinds exhibiting two follicular waves than in hinds exhibiting three and four waves (P < 0.05). The interwave interval was similar among waves in two-wave cycles and the first wave of three-wave cycles. All other interwave intervals in three- and four-wave cycles were shorter (P < 0.05). The maximum diameter of the dominant follicle of the first wave was similar among two-, three-, and four-wave cycles. For all other waves in three- and four-wave cycles, the maximum diameter was smaller (P < 0.05). Corpus luteum diameter and plasma progesterone concentrations were similar between two- and three-wave cycles, but the luteal phase was longer (P < 0.05) in four-wave cycles. The dominant follicle emerged at a diameter of 4 mm at 0.4 +/- 0.1 and 0.8 +/- 0.1 d before the largest and second largest subordinate follicles, respectively. The follicle destined to become dominant was larger (P < 0.05) than the largest subordinate follicle one day after emergence, which coincided with the first significant decrease in serum FSH concentration. We concluded that the estrous cycle in wapiti is characterized by two, three, or four waves of follicular development (each preceded by a surge in circulating FSH), that there is a positive relationship between the number of waves and the duration of the cycle, and an inverse relationship between the number of waves and the magnitude of follicular dominance (diameter and duration of the dominant follicle).  相似文献   

18.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

19.
Daily transrectal ultrasonography of ovaries was done in seven Finn ewes during three 17-day periods from May to July. Blood samples were collected each day for estimation of the serum follicle-stimulating hormone (FSH), oestradiol and progesterone concentrations, and also every 15 min for 6 h, halfway through each period of ultrasonographic examination, to determine the patterns of gonadotropic hormone secretion. Four ewes ceased cycling from March to mid-April (ewes entering anoestrus early) and three in May (ewes entering anoestrus late). In all ewes cyclicity resumed during the period from mid-August to mid-September. The growth of ovarian antral follicles to periovulatory sizes of >/=5 mm in diameter was seen at all stages of anoestrus. An average of four waves of follicular development (follicles growing from 3 to >/=5 mm in diameter before regression) with a periodicity of 4 days were recorded during each of the three scanning periods. There was a close temporal relationship between days of follicular wave emergence and peaks of successive FSH fluctuations. Ewes entering anoestrus late exceeded ewes that became anoestrus early in numbers of large (>/=5 mm in diameter) ovarian antral follicles and maximum follicle diameter. Peak concentrations of transient FSH increases were higher (P<0.05) in ewes entering anoestrus late than in ewes entering anoestrus early. The secretion of luteinising hormone, (LH; mean and basal level, and LH pulse frequency, but not amplitude) was lowest during the month of June in all ewes. Oestradiol production was markedly suppressed throughout anoestrus. Peaks of progesterone secretion appeared to occur at regular intervals and were associated with the end of the growth phase of the largest follicles of sequential waves. In conclusion, the growth of ovarian follicles to ostensibly ovulatory diameters is maintained throughout anoestrus in Finn ewes and periodic emergence of follicular waves is correlated with an endogenous rhythm of FSH secretion. The present study also provides evidence for the inverse relationship between the time of the onset of seasonal anoestrus and the number and size of antral follicles developing throughout anoestrus in Finn ewes, and indicates that differences exist in both the secretion of and ovarian responsiveness to gonadotropic hormones among early and late anoestrous ewes.  相似文献   

20.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号