首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.  相似文献   

2.
The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ET(A)/ET(B) receptor blockade was achieved with bosentan (100 mg.kg(-1).day(-1)). All male and female HanSD as well as heterozygous TGR on NS exhibited 100 % survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46 % and 80 %, respectively, and were significantly improved by administration of bosentan to 76 % and 97 %, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading.  相似文献   

3.

Background

Right ventricular (RV) dysfunction is a complication of pulmonary hypertension and portends a poor prognosis. Pharmacological therapies targeting RV function in pulmonary hypertension may reduce symptoms, improve hemodynamics, and potentially increase survival. We hypothesize that recombinant human angiotensin-converting enzyme 2 (rhACE2) will improve RV function in a pressure overload model.

Results

rhACE2 administered at 1.8 mg/kg/day improved RV systolic and diastolic function in pulmonary artery banded mice as measured by in vivo hemodynamics. Specifically, rhACE2 increased RV ejection fraction and decreased RV end diastolic pressure and diastolic time constant (p<0.05). In addition, rhACE2 decreased RV hypertrophy as measured by RV/LV+S ratio (p<0.05). There were no significant negative effects of rhACE2 administration on LV function. rhACE2 had no significant effect on fibrosis as measured by trichrome staining and collagen1α1 expression. In pulmonary artery banded mice, rhACE2 increased Mas receptor expression and normalized connexin 37 expression.

Conclusion

In a mouse RV load-stress model of early heart failure, rhACE2 diminished RV hypertrophy and improved RV systolic and diastolic function in association with a marker of intercellular communication. rhACE2 may be a novel treatment for RV failure.  相似文献   

4.
Our objective was to test the hypothesis that 1) a high Na (HNa, 3%) diet would increase blood pressure (BP) in male Wistar-Kyoto (WKY) and spontaneously hypertensive Y chromosome (SHR/y) rat strains in a territorial colony; 2) sympathetic nervous system (SNS) blockade using clonidine would lower BP on a HNa diet; and 3) prepubertal androgen receptor blockade with flutamide would lower BP on a HNa diet. A 2 x 4 factorial design used rat strains (WKY, SHR/y) and treatment [0.3% normal Na (NNa), 3% HNa, HNa/clonidine, and HNa/flutamide]. BP increased in both strains on the HNa diet (P < 0.0001). There was no significant decrease in BP in either strain with clonidine treatment. Androgen receptor blockade with flutamide significantly decreased BP in both strains (P < 0.0001) and normalized BP in the SHR/y colony. Neither heart rate nor activity could explain these BP differences. In conclusion, a Na sensitivity was observed in both strains, which was reduced to normotensive values by androgen blockade but not by SNS blockade.  相似文献   

5.
This study was conducted to determine whether the thromboxane A2 receptor antagonist SQ 30,741 can improve post-ischemic recovery of cardiac function in anesthetized dogs. Saline or SQ 30,741 was infused throughout a 15-min coronary occlusion and 5 hr of reperfusion. Ischemic regional cardiac function was determined using subendocardial ultrasonic crystals. Despite no differences in collateral blood flow or reperfusion flow, SQ 30,741 significantly improved ventricular segmental shortening at all times measured during reperfusion. At 5 hr after the initiation of reperfusion, segmental shortening was 3 +/- 16 and 44 +/- 10% of baseline values for saline and SQ 30,741 groups, respectively. These results implicate thromboxane receptor activation in the pathogenesis of myocardial stunning, and thromboxane antagonists may be useful in mitigating this functional deficit.  相似文献   

6.
Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT(1)) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age (n = 8) were compared with two separate groups of older rats: one control group (n = 7) and one group treated with L-158,809 (n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT(1) receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 +/- 2 mg/day vs. control: 129 +/- 51 mg/day vs. treated: 9 +/- 3 mg/day, P < 0.05). Long-term AT(1) receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.  相似文献   

7.
This study was designed to investigate the role of eicosanoids, thromboxane A2 (TXA2) and prostacyclin (PGI2) as well as their relationship with endothelin-1 (ET-1) in the pathogenesis of renal parenchymal hypertension. Uremic rats were prepared by renal mass ablation and compared with sham-operated controls. The stable metabolites of TXA2 (TXB2) and PGI2 (6-keto-PGF1alpha) and immunoreactive ET-1 concentrations were measured by specific RIAs in biological fluids and in vascular and renal tissues. To investigate the functional role of TXA2 in the progression of hypertension and renal failure, a group of uremic rats were treated with ridogrel (25 mg/kg/day), a TXA2 synthase inhibitor and receptor antagonist. Renal preproET-1 expression was assessed by Northern blot analysis. Systolic blood pressure (SBP), serum creatinine and proteinuria were found to be higher in uremic rats as compared to sham-operated controls (P < 0.01). TXB2 and ET-1 concentrations were increased in blood vessels, the renal cortex and in urine (P < 0.05). 6-keto-PGF1alpha concentrations were also increased in blood vessels and the renal cortex but decreased in urine (P < 0.05). Ridogrel significantly lowered SBP and proteinuria (P < 0.05) and blunted the increase of serum creatinine. Treatment with ridogrel resulted in a marked fall in vascular, renal and urine TXA2 concentrations, while ET-1 and 6-keto-PGF1alpha concentrations remained unchanged. The preproET-1 expression was higher in uremic rats than in the controls and was unaffected by ridogrel. These results suggest that TXA2 is involved in the pathogenesis of hypertension and renal failure progression in rats with subtotal 5/6 nephrectomy and that this effect is independent of the ET-1 system.  相似文献   

8.
Endothelin receptor blockade is an emerging therapy for pulmonary hypertension. However, hemodynamic and structural effects and potential changes in endogenous nitric oxide (NO)-cGMP and endothelin-1 signaling of chronic endothelin A receptor blockade in pulmonary hypertension secondary to congenital heart disease are unknown. Therefore, the objectives of this study were to determine hemodynamic and structural effects and potential changes in endogenous NO-cGMP and endothelin-1 signaling of chronic endothelin A receptor blockade in a lamb model of increased pulmonary blood flow following in utero placement of an aortopulmonary shunt. Immediately after spontaneous birth, shunt lambs were treated lifelong with either an endothelin A receptor antagonist (PD-156707) or placebo. At 4 wk of age, PD-156707-treated shunt lambs (n = 6) had lower pulmonary vascular resistance and right atrial pressure than placebo-treated shunt lambs (n = 8, P < 0.05). Smooth muscle thickness or arterial number per unit area was not different between the two groups. However, the number of alveolar profiles per unit area was increased in the PD-156707-treated shunt lambs (190.7 +/- 5.6 vs. 132.9 +/- 10.0, P < 0.05). Plasma endothelin-1 and cGMP levels and lung NOS activity, cGMP, eNOS, preproendothelin-1, endothelin-converting enzyme-1, endothelin A, and endothelin B receptor protein levels were similar in both groups. We conclude that chronic endothelin A receptor blockade attenuates the progression of pulmonary hypertension and augments alveolar growth in lambs with increased pulmonary blood flow.  相似文献   

9.
Forty-nine hypertensive patients who were overweight were randomly allocated to one of three strategies for attaining weight reduction and were followed for one year. Those referred to a dietitian lost more weight (mean 5.1 kg) than those given a diet sheet (mean 2.64 kg) or simply advised by the doctor to reduce weight (mean 2.15 kg). One-third of all the patients lost 6 kg or more. Successful weight loss was associated with a highly significant and substantial improvement in blood pressure control and with less frequent increases in antihypertensive treatment.  相似文献   

10.
11.
BACKGROUND: Activation of the vitamin D-vitamin D receptor (VDR) axis has been shown to reduce blood pressure and left ventricular (LV) hypertrophy. Besides cardiac hypertrophy, cardiac fibrosis is a key element of adverse cardiac remodeling. We hypothesized that activation of the VDR by paricalcitol would prevent fibrosis and LV diastolic dysfunction in an established murine model of cardiac remodeling. METHODS: Mice were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Mice were treated with paricalcitol, losartan, or a combination of both for a period of four consecutive weeks. RESULTS: The fixed aortic constriction caused similar increase in blood pressure, both in untreated and paricalcitol- or losartan-treated mice. TAC significantly increased LV weight compared to sham operated animals (10.2±0.7 vs. 6.9±0.3mg/mm, p<0.05). Administration of either paricalcitol (10.5±0.7), losartan (10.8±0.4), or a combination of both (9.2±0.6) did not reduce LV weight. Fibrosis was significantly increased in mice undergoing TAC (5.9±1.0 vs. sham 2.4±0.8%, p<0.05). Treatment with losartan and paricalcitol reduced fibrosis (paricalcitol 1.6±0.3% and losartan 2.9±0.6%, both p<0.05 vs. TAC). This reduction in fibrosis in paricalcitol treated mice was associated with improved indices of LV contraction and relaxation, e.g. dPdtmax and dPdtmin and lower LV end diastolic pressure, and relaxation constant Tau. Also, treatment with paricalcitol and losartan reduced mRNA expression of ANP, fibronectin, collagen III and TIMP-1. DISCUSSION: Treatment with the selective VDR activator paricalcitol reduces myocardial fibrosis and preserves diastolic LV function due to pressure overload in a mouse model. This is associated with a reduced percentage of fibrosis and a decreased expression of ANP and several other tissue markers.  相似文献   

12.
Heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme catabolism, exhibits potent antioxidant and anti-inflammatory properties. We developed HO-1 transgenic (Tg) mice using a rat HO-1 genomic transgene under the control of the endogenous promoter. Transgene expression was demonstrated by RT-PCR in all studied tissues, and a modest HO-1 overexpression was documented by Western, ELISA, and enzyme activity assays. To assess the effect of local vs systemic HO-1 in the acute rejection response, we used Tg mice as organ donors or recipients of MHC-incompatible heart grafts. In the local HO-1 overexpression model, Tg allografts survived 10.5 +/- 0.7 days (n = 10), compared with 6.5 +/- 0.4 days (n = 6) for wild-type donor controls (p = 0.0001). In the systemic HO-1 overexpression model, Tg recipients maintained allografts for 26.8 +/- 3.4 days (n = 10), compared with 6.3 +/- 0.1 days (n = 12) in wild-type controls (p = 0.00009). Inhibition of HO activity by treatment with tin protoporphyrin blunted survival advantage in Tg mice and resulted in acute graft rejection (n = 3). Increased carboxyhemoglobin levels were consistently noted in Tg mice. Comparisons of grafts at day 4 indicated that HO-1 overexpression was inversely associated with vasculitis/inflammatory cell infiltrate in both models. Hearts transplanted into Tg recipients showed decreased CD4(+) lymphocyte infiltration and diminished immune activation, as judged by CD25 expression. Thus, although local and systemic HO-1 overexpression improved allograft outcomes, systemic HO-1 led to a more robust protection and resulted in a significant blunting of host immune activation. This Tg mouse provides a valuable tool to study mechanisms by which HO-1 exerts beneficial effects in organ transplantation.  相似文献   

13.
Du  Rui  Wang  Xu  He  Shigang 《中国科学:生命科学英文版》2020,63(9):1337-1346
Optic neuropathies lead to blindness; the common pathology is the degeneration of axons of the retinal ganglion cells. In this study, we used a rat model of retinal ischemia-reperfusion and a one-time intravitreal brain-derived neurotrophic factor(BDNF)injection; then we examined axon transportation function, continuity, physical presence of axons in different part of the optic nerve, and the expression level of proteins involved in axon transportation. We found that in the disease model, axon transportation was the most severely affected, followed by axon continuity, then the number of axons in the distal and proximal optic nerve. BDNF treatment relieved all reductions and significantly restored function. The molecular changes were more minor,probably due to massive gliosis of the optic nerve, so interpretation of protein expression data should be done with some caution.The process in this acute model resembles a fast-forward of changes in the chronic model of glaucoma. Therefore, impairment in axon transportation appears to be a common early process underlying different optic neuropathies. This research on effective intervention can be used to develop interventions for all optic neuropathies targeting axon transportation.  相似文献   

14.
Congestive heart failure is associated with a loss of circadian and short-term variability in blood pressure and heart rate. In order to assess the contribution of elevated cardiac sympathetic activity to the disturbed cardiovascular regulation, we monitored blood pressure and heart rate in mice with cardiac overexpression of the β1-adrenoceptor prior to the development of overt heart failure. Telemetry transmitters for continuous monitoring of blood pressure and heart rate were implanted in 8 to 9-week-old wildtype and transgenic mice, derived from crosses of heterozygous transgenic (line β1TG4) and wildtype mice. Cardiovascular circadian patterns were analyzed under baseline conditions and during treatment with propranolol (500 mg/L in drinking water). Short-term variability was assessed by spectral analysis of beat-to-beat data sampled for 30 min at four circadian times. Transgenic β1TG4 mice showed an increase in 24 h heart rate, while blood pressure was not different from wildtype controls. Circadian patterns in blood pressure and heart were preserved in β1TG4 mice. Addition of propranolol to the animals' drinking water led to a reduction in heart rate and its 24 h variation in both strains of mice. Short-term variability in blood pressure was not different between wildtype and β1TG4 mice, but heart rate variability in the transgenic animals showed a rightward shift of the high-frequency component in the nocturnal activity period, suggesting an increase in respiratory frequency. In conclusion, the present study shows that both the circadian and the short-term regulation of blood pressure and heart rate are largely preserved in young, nonfailing β1-transgenic mice. This finding suggests that the loss of blood pressure and heart rate variability observed in human congestive heart failure cannot be attributed solely to sympathetic overactivity but reflects the loss of adrenergic responsiveness to changes in the activity of the autonomic nervous system.  相似文献   

15.
Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient‐recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low‐N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N‐depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up‐regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up‐regulating amylase gene (MdAM1) and up‐regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up‐regulating nitrate reductase MdNIA2 and 3 high‐affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N‐depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N‐deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity.  相似文献   

16.
17.
18.
ABSTRACT: BACKGROUND: The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. METHODS: A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. RESULTS: The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. CONCLUSIONS: A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.  相似文献   

19.
Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT(1)R) blockade. This is important as, even with contemporary use of AT(1)R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination of direct renin inhibition with AT(1)R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT(1)R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (i.e. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels.  相似文献   

20.
Multiple autoimmune diseases are characterized by the involvement of autoreactive Abs in pathogenesis. Problems associated with existing therapeutics such as the delivery of intravenous immunoglobulin have led to interest in developing alternative approaches using recombinant or synthetic methods. Toward this aim, in the current study, we demonstrate that the use of Fc-engineered Abs (Abs that enhance IgG degradation [Abdegs]) to block neonatal FcR (FcRn) through high-affinity, Fc region binding is an effective strategy for the treatment of Ab-mediated disease. Specifically, Abdegs can be used at low, single doses to treat disease in the K/B×N serum transfer model of arthritis using BALB/c mice as recipients. Similar therapeutic effects are induced by 25- to 50-fold higher doses of i.v. Ig. Importantly, we show that FcRn blockade is a primary contributing factor toward the observed reduction in disease severity. The levels of albumin, which is also recycled by FcRn, are not affected by Abdeg delivery. Consequently, Abdegs do not alter FcRn expression levels or subcellular trafficking behavior. The engineering of Ab Fc regions to generate potent FcRn blockers therefore holds promise for the therapy of Ab-mediated autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号